欢迎来到皮皮网官网

【歌单编辑源码】【idea的源码outline】【如何调试js源码】eigen源码实现

时间:2024-11-28 16:55:39 来源:linux 操作系统源码

1.Eigen3不同版本切换
2.坐标转换&点云变换&姿态互转| TransForms3d
3.Eigen的码实介绍、安装与入门操作
4.Python与C++混合开发(VisualStudio+PyBind11)
5.window 配置eigen3环境
6.四足机器人雷达-视觉导航2:Elevation mapping局部高程图测试

eigen源码实现

Eigen3不同版本切换

       在探索SLAM技术的码实过程中,版本问题常常成为编译挑战的码实关键。为此,码实我整理了一篇关于Eigen版本切换的码实实用指南,帮助你在不同项目中轻松转换。码实歌单编辑源码让我们从apt-get安装开始,码实它是码实最常用且便捷的方式:

       首先,你可以使用sudo apt-get install libeigen3-dev命令,码实apt-get的码实安装路径通常在/usr/include下的eigen3文件夹中(见下图)。

       如果你需要特定版本,码实如Eigen3.3.9,码实源码编译是码实你的选择。以这个版本为例:

       首先,码实从GitHub或GitLab下载所需的码实版本,比如:

       # git clone /libeigen/eigen.git

       wget /libeigen/eigen/-/archive/3.3.9/eigen-3.3.9.zip

       unzip eigen-3.3.9.zip

       cd eigen-3.3.9

       mkdir build && cd build

       cmake -DCMAKE_INSTALL_PREFIX=~/eigen_output ..

       make && make install

       编译完成后,你将在~/eigen_output目录下找到eigen3库。之后,将生成的库文件重命名,如sudo mv eigen3 eigen,便于版本区分。

       Ubuntu系统通过eigen3.pc文件管理版本查找。apt-get安装的版本位于/usr/share/pkgconfig,而源码编译的版本在安装目录的share/pkgconfig。对比两者,确保保留适当的eigen3.pc文件,修改Version行指向所需的版本,然后重命名eigen3路径:

       执行如下命令进行版本切换:sudo mv eigen3 eigen,将当前版本重命名;sudo mv eigen eigen3,将新版本设置为主用。idea的源码outline这样,通过路径重定向,版本切换顺利完成。

       如果你在实际操作中遇到问题,这个指南希望能作为参考。祝你在Eigen版本管理上得心应手!

       (注意:以上内容旨在提供指导,实际操作时请确保对文件和路径有充分的理解,以避免可能的冲突。)

坐标转换&点云变换&姿态互转| TransForms3d

       本文分享的开源库TransForms3d,专为坐标转换和点云变换提供解决方案,基于Eigen库构建,无需额外依赖,适用于机器人开发和导航系统构建。

       开源地址:gitee.com/ohhuo/transfo... 或 github.com/fishros/tran...

       该库提供丰富的函数,覆盖角度、欧拉角、四元数和齐次矩阵等基础转换,以及坐标变换组操作。

       安装与使用

       1. **源码引入**:将trans_forms_group.cpp,trans_forms.cpp,transforms3d.h文件复制至项目中。

       2. **编译安装**:根据项目需求进行编译。

       3. **使用样例**:

        - **手眼矩阵估算**:通过TransformsGroup实现。

        - **点云坐标转换**:利用TransformsGroup完成。

        - **欧拉角转换**:支持多种格式转换。

       函数列表

       基础部分:角度、弧度、欧拉角、四元数、齐次矩阵等转换。如何调试js源码

       坐标变换组:添加、打印、查找坐标转换关系。

       鸣谢与反馈

       欢迎贡献代码、提供反馈,共同提升TransForms3d库的性能与功能。

Eigen的介绍、安装与入门操作

       Eigen是一个C++的开源模板库,专用于线性代数运算,包括向量和矩阵操作,以及数值分析等。它以头文件形式存在,无需编译,只需在cpp文件中添加`#include "Eigen/Dense"`即可使用。

       安装与入门

       在Ubuntu Server .上,Eigen的安装有两条路径:通过apt命令或手动编译。

       1. apt命令安装

       虽然简单,但apt包更新较慢,可能不是最新版本,这可能影响依赖于最新Eigen的库的使用。检查版本的命令是:`apt-cache policy eigen`。

       2. 手动编译安装

       从Eigen官网下载源码或使用wget,解压后进入目录,然后进行编译。安装成功后,可以通过编写并运行代码验证,如`MatrixXd matrix = MatrixXd::Random(2, 2); cout << matrix << endl;`。

       实例演示

       矩阵操作

       创建一个2x2矩阵,赋值并输出,跑分源码 usdt如`MatrixXd m = MatrixXd::Random(2, 2); cout << m << endl;`。

       矩阵与向量

       定义一个3x3矩阵和3维向量,进行矩阵加常数和矩阵向量乘法,展示其运算结果。

       总结

       本文简要介绍了Eigen的基本概念、安装方法、头文件使用以及入门级的矩阵向量操作。深入学习Eigen,还有更多内容等待探索。

Python与C++混合开发(VisualStudio+PyBind)

       在开发过程中,Python与C++的混合使用可以通过Visual Studio和PyBind实现。本文将指导如何在Visual Studio中创建动态链接库,并通过PyBind为C++库添加Python接口,以便于Python调用。

       步骤如下:

       1. 创建一个Visual Studio的C++动态链接库项目,详细步骤可参考作者之前的文章。

       2. 在GitHub上下载pybind(版本2..1)和Eigen(版本3.4.0)的源码,将它们解压缩并放入项目文件的deps文件夹。

       3. 配置项目属性,包括添加包含目录(添加Python和Eigen库路径),库目录(Python的lib文件夹),以及预处理器和链接器的设置,确保链接python3.lib或python.lib。

       4. 编写C++源代码,如include/common.h、transform_2d.h和src/transform_2d.cpp,同时在python/akai.cpp中定义Python模块和接口。

       5. 在工程中生成akai.pyd动态链接库,通过重新生成项目并查看日志确认库的wireshark源码追踪流生成。

       6. 在AKAI/example文件夹中,通过终端运行jupyter notebook,并编写Python脚本,导入akai的tf2d模块,调用RotationMatrix函数,验证接口的正确性。

       完成以上步骤后,你将能够在Visual Studio中成功混合使用Python和C++,并利用PyBind建立两者间的交互。

window 配置eigen3环境

       在VS 、CMake 3..2和GCC/G++ 8.1的环境中配置Eigen3库的步骤如下:

       首先,从官网下载Eigen3源码包。

       接着,进行解压操作以准备编译。

       进入步骤3,编译并安装。执行以下命令:

       创建一个名为"build"的目录。

       切换到该目录。

       使用CMake构建库:运行`cmake ..`。默认安装路径为C:\Program Files (x)\Eigen3,但为了便于管理,可以选择将安装文件复制到D盘,并移除C盘原有的文件。

       Eigen3是一个模板库,主要包含头文件和xx.cmake文件,不包含预编译的库。

       在进行测试时,需要编写测试文件。创建一个cmakeLists.txt和一个main.cpp文件。

       继续测试步骤,你可以选择以下两种方法:

       创建新的"build"目录,切换并运行`cmake ..`。这将生成一个Visual Studio解决方案文件,用于在VS中进行工程操作。

       或者,如果使用MinGW Makefiles,执行`cmake .. -G "MinGW Makefiles"`后,进行`make`,直接生成可执行文件。

四足机器人雷达-视觉导航2:Elevation mapping局部高程图测试

       为了四足机器人实现高效的局部高程图构建,结合视觉与雷达技术,确保导航的准确性和稳定性,本文将详细阐述这一过程。四足机器人相较于自动驾驶,需要主动选择落足点,因此局部高程图尤为重要。获取高程图,视觉与雷达传感器各有优劣,例如视觉传感器易受光照、遮挡等因素影响,而雷达传感器在噪声、死区和点云稀疏等问题上则有所欠缺。因此,融合视觉与雷达数据,形成互补,成为目前较为稳定的解决方案。

       雷达提供长期可靠的里程计信息,而深度视觉则用于获取局部深度数据,从而建立高程图。这种方案分为实时高程图与全局高程图两种。实时高程图基于深度信息快速构建,实现简便,速度较快,甚至可能无需全局定位数据。然而,视角和深度图质量问题可能导致噪声和空洞。全局高程图则先建立整个环境的地图,然后基于里程计信息提取局部信息,这种方案需要全局定位信息,但通过利用机器人多视角下的数据采集,不断优化修正全局高程地图,最终提取的局部高程图质量更高。

       实现高程图建立的项目,以ETH开源的“elevation mapping”为代表。本文提供了一个从最初下载、编译到最终基于Gazebo仿真运行简单Demo的过程,旨在帮助快速部署项目。首先,确保ROS的正确安装与更新,采用melodic版本。其次,安装Grid Map、kindr、pcl点云库等依赖库,注意在编译过程中可能遇到的内存不足等问题,确保编译环境的资源充足。在进行PCL库编译时,遇到的“error: ‘PCL_MAKE_ALIGNED_OPERATOR_NEW’ does not name a type”问题,可以通过修改为“EIGEN_MAKE_ALIGNED_OPERATOR_NEW”解决。在下载和编译kindr_ros与elevation mapping后,通过catkin_make进行编译,可能遇到的编译错误如“fatal error”问题,需要找到并修正hpp文件中的错误。

       在完成安装与编译后,通过下载turtlebot3与相关ROS包,建立新的catkin工作空间,下载源码并编译。在编译过程中,可能需要解决与python版本匹配、文件路径等细节问题。运行Demo,基于turtlebot3和RealSense的示例,注意可能需要对脚本进行修改以适应特定的环境或系统配置,如Python版本匹配问题,以及修改地图文件路径。在运行中,通过Rviz观察点云和高程图数据,验证高程图构建的实时性和准确性。

       然而,在实际应用中,还存在一些挑战。例如,运算速度可能无法满足实时需求,尤其是不采用GPU的情况下,刷新频率可能较低。真实世界中的传感器噪声相比仿真环境更大,地图构建效果可能不如预期。此外,需要进一步开发代码以提取局部高程图,并通过UDP或共享内存等方式将其发送给步态控制器。随着机器人运动,全局地图的构建与维护对于计算资源的要求较高,尤其是使用低成本处理器时。面对这些问题,可能需要优化算法、改进资源管理,或直接构建局部地图以适应不同环境与设备的性能限制。

       综上所述,结合视觉与雷达技术构建的高程图,对于四足机器人的局部导航具有重要价值。通过合理利用开源资源与技术工具,可以实现从环境感知到高程图构建的全流程,为机器人的自主导航提供坚实的支撑。面对实际应用中的挑战,持续的技术优化与创新将推动四足机器人在复杂环境下的高效导航与操作能力。

vs已经在vc++目录中加入eigen的目录为什么还是提示找

       欲在Visual Studio 中集成著名的矩阵运算库Eigen,本文提供详细步骤。首先,访问Eigen官网下载3.3.8版本源码。在Visual Studio中创建空项目。为简化管理,不勾选将解决方案和项目置于同一目录选项,以确保文件结构清晰。创建src、include、deps、config等文件夹,Eigen源码置于deps/eigen目录下。

       配置项目属性,添加Eigen目录。在项目属性页中选择C/C++标签进行调整,确保文件夹路径正确设置。创建test_eigen.cpp文件进行代码测试,验证配置是否正确。若项目多于一个,例如Project2,需将Eigen目录添加至其C/C++属性页的附加包含目录中,并确保路径相对项目文件夹。创建Project2/src目录,添加测试代码,并设置Project2为启动项,运行以验证配置。

       总结,本文详细阐述了如何在Visual Studio 中集成Eigen库,并说明了处理多项目情况的方法。此过程对于集成其他库应具相似性。欢迎关注个人网站以及GzH: SLAM学习er,作者将持续更新更多内容。

copyright © 2016 powered by 皮皮网   sitemap