皮皮网

【dnf 符咒源码】【员工计件源码】【麻将源码网站】tensorflow源码在哪

时间:2025-01-18 16:58:56 分类:热点 来源:通达信帝纳波利买入点源码

1.从源码build Tensorflow2.6.5的源码记录
2.[推理部署]👉Mac源码编译TensorFlow C++指北
3.极简入门TensorFlow C++源码
4.Python语言学习(三):Tensorflow_gpu搭建及convlstm核心源码解读
5.电脑macOS mojave 10.14.6, 编译tensorflow2.6解决SSE4.1 SSE4.2 AVX指令集问题。
6.探索TensorFlow核心组件系列之Session的源码运行源码分析

tensorflow源码在哪

从源码build Tensorflow2.6.5的记录

       .从源码编译Tensorflow2.6.5踩坑记录,笔者经过一天的源码努力,失败四次后终于成功。源码Tensorflow2.6.5是源码截至.时,能够从源码编译的源码dnf 符咒源码最新版本。

       0 - 前期准备

       为了对Tensorflow进行大规模修改并完成科研工作,源码笔者有从源码编译Tensorflow的源码需求。平时更常用的源码做法是在conda环境中pip install tensorflow,有时为了环境隔离方便打包,源码会用docker先套住,源码再上conda + pip安装。源码

       1 - 资料汇总

       教程参考:

       另注:bazel的源码编译可以使用换源清华镜像(不是必要)。整体配置流程的源码根本依据还是官方的教程,但它的源码教程有些点和坑没有涉及到,所以多方材料了解。

       2 - 整体流程

       2.1 确定配置目标

       官网上给到了配置目标,和对应的版本匹配关系(这张表里缺少了对numpy的版本要求)。笔者最后(在docker中)配置成功的版本为tensorflow2.6.5 numpy1..5 Python3.7. GCC7.5.0 CUDA.3 Bazel3.7.2。

       2.2 开始配置

       为了打包方便和编译环境隔离,在docker中进行了以下配置:

       2. 安装TensorFlow pip软件包依赖项,其编译过程依赖于这些包。

       3. Git Tensorflow源代码包。

       4. 安装编译工具Bazel。

       官网的介绍:(1)您需要安装Bazel,才能构建TensorFlow。您可以使用Bazelisk轻松安装Bazel,并且Bazelisk可以自动为TensorFlow下载合适的Bazel版本。为便于使用,请在PATH中将Bazelisk添加为bazel可执行文件。(2)如果没有Bazelisk,您可以手动安装Bazel。请务必安装受支持的Bazel版本,可以是tensorflow/configure.py中指定的介于_TF_MIN_BAZEL_VERSION和_TF_MAX_BAZEL_VERSION之间的任意版本。

       但笔者尝试最快的安装方式是,到Github - bazelbuild/build/releases上下载对应的版本,然后使用sh脚本手动安装。比如依据刚才的配置目标,笔者需要的是Bazel3.7.2,所以下载的员工计件源码文件为bazel-3.7.2-installer-linux-x_.sh。

       5. 配置编译build选项

       官网介绍:通过运行TensorFlow源代码树根目录下的./configure配置系统build。此脚本会提示您指定TensorFlow依赖项的位置,并要求指定其他构建配置选项(例如,编译器标记)。

       这一步就是选择y/N基本没啥问题,其他参考里都有贴实例。笔者需要GPU的支持,故在CUDA那一栏选择了y,其他部分如Rocm部分就是N(直接按enter也可以)。

       6.开始编译

       编译完成应输出

       7.检查TF是否能用

       3 - 踩坑记录

       3.1 cuda.0在编译时不支持sm_

       笔者最初选择的docker是cuda.0的,在bazel build --config=cuda //tensorflow/tools/pip_package:build_pip_package过程中出现了错误。所以之后选择了上面提到的cuda.3的docker。

       3.2 问题2: numpy、TF、python版本匹配

       在配置过程中,发现numpy、TF、python版本需要匹配,否则会出现错误。

       4 - 启示

       从源码编译Tensorflow2.6.5的过程,虽然经历了多次失败,但最终还是成功。这个过程也让我对Tensorflow的编译流程有了更深入的了解,同时也提醒我在后续的工作中要注意版本匹配问题。

[推理部署]👉Mac源码编译TensorFlow C++指北

       在Mac环境下编译TensorFlow C++源码,需要完成以下步骤,以避免可能的编译问题,确保顺利构建。

       首先,确认系统环境满足要求。需有Xcode和Command Line Tools,JDK 1.8.0版本以支持编译过程中所需的Java环境,以及Bazel工具,TensorFlow依赖此工具进行编译。特别注意Bazel版本需与TensorFlow对应,如TensorFlow 1.对应Bazel 0..1。

       接下里,安装依赖,包括JDK和Bazel。麻将源码网站JDK安装时需检查电脑中是否已安装,并确保正确安装。使用HomeBrew安装Bazel,通过命令行接受协议,并使用`--user`指令确保安装在个人目录的`bin`文件夹下,同时设置`.bazelrc`路径为`$HOME/.bazelrc`。

       安装自动化工具`automake`和使用Python3.7.5在虚拟环境中构建TensorFlow C++源码。推荐使用清华镜像源加速`pip`的安装过程。通过`git clone`方式下载TensorFlow源码,确保checkout至r1.分支。调整域名映射以提升`git clone`速度。

       进行编译选项配置,通常在TensorFlow文件夹内运行命令,根据提示选择默认选项。

       开始编译TensorFlow,此过程可能需要较长时间,完成后,应在`bazel-bin/tensorflow`目录下找到编译好的`libtensorflow_cc.so`和`libtensorflow_framework.1.dylib`文件。

       若遇到`Undefined symbols for architecture x_: “_CFRelease”`错误,这通常与创建软连接有关,无需特别处理。若需要手动安装额外依赖库,如Eigen3,可参考相关指南。

       编译完成后,可对C++接口进行测试,验证编译过程的正确性。通常情况下,Mac下的TensorFlow 1. C++源码编译完成。

       最后,编译TFLite,生成的动态链接库将保存在指定目录下。在`CMakelists.txt`文件中增加对应配置项,以完成TFLite的构建。

       总结而言,Mac下TensorFlow 1. C++源码编译及TFLite的构建,需要遵循上述步骤,并确保环境与工具版本的兼容性,以顺利进行编译过程。手机obs源码Linux系统下的编译方式相似,但具体细节可能有所不同。

极简入门TensorFlow C++源码

       前一段时间,我专注在框架开发上,并偶尔协助业务同学优化使用TensorFlow的代码。在观看dmlc/relay、nnvm的代码时,我发现了它们的有趣之处。我也对TensorFlow的Graph IR、PaddlePaddle的Graph IR产生了兴趣,上周五在阅读代码时,无意间听到了一个数据竞赛群讨论框架的底层实现。几位算法大佬提到了看底层源码可能较为繁琐,因为这类代码通常相对容易理解。在与群内伙伴的交流后,我萌生了撰写一篇关于如何阅读TensorFlow或其他框架底层源码的文章。

       选择合适版本的bazel,对于阅读TensorFlow源码至关重要。应使用版本为0..0的bazel来拉取TF2.0代码,因为太高的版本或太低的版本可能影响阅读体验。在安装了合适的bazel版本后,使用clion上的bazel插件进行导入,然后配置编译,导入项目,等待clion编译整个项目。完成编译后,就能愉快地阅读代码,甚至于protobuf生成的文件也能轻松跳转。

       使用c++编译模型是TensorFlow的另一面。尝试使用c++编写模型代码,可以深入理解TensorFlow的底层机制。主要函数包括CreateGraphDef、ConcurrentSteps、ConcurrentSessions等。通过这些函数,可以构建计算图,定义节点、常量变量、操作符等。源码教育机构这为理解TensorFlow的逻辑提供了直观的视角。

       深入分析代码后,可以了解到TensorFlow的GraphDef机制、Square类的实现、注册到特定op的过程、functor的使用以及最终的实现逻辑。这有助于理解TensorFlow的核心原理,并在阅读源码时进行更深入的思考。

       除了阅读源码,还可以通过编写测试用例来增强理解。TensorFlow提供了丰富的测试用例,如在client_session_test.cc中运行测试程序,可以验证代码的正确性。这不仅有助于理解代码,还能提高对TensorFlow框架的掌握程度。

       阅读源码只是理解TensorFlow原理的开始,深入行业论文和请教行业专家是进一步深入学习的关键。网络上关于机器学习系统的资料丰富多样,但缺少系统性的课程。希望官方能够分享更多框架的干货,并期待在学习过程中总结和分享更多资源。阅读源码虽然复杂,但其背后蕴含的原理和逻辑十分有趣。

Python语言学习(三):Tensorflow_gpu搭建及convlstm核心源码解读

       在探索深度学习领域,使用Python语言进行编程无疑是一条高效且灵活的途径。尤其在科研工作或项目实施中,Python以其丰富的库资源和简单易用的特性,成为了许多专业人士的首选。本文旨在分享在Windows系统下使用Anaconda搭建TensorFlow_gpu环境及解读ConvLSTM核心源码的过程。在提供具体步骤的同时,也期待读者的反馈,以持续改进内容。

       为了在Windows系统下搭建适合研究或项目的TensorFlow_gpu环境,首先需要确认TensorFlow_gpu版本及其对应的cuDNN和CUDA版本。访问相关网站,以获取适合自身硬件配置的版本信息。以TensorFlow_gpu2.为例,进行环境搭建。

       在Anaconda环境下,通过命令行操作来创建并激活特定环境,如`tensorflow-gpu`环境,选择Python3.版本。接着,安装cuDNN8.1和CUDA.2。推荐使用特定命令确保安装过程顺利,亲测有效。随后,使用清华镜像源安装TensorFlow_gpu=2..0。激活虚拟环境后,使用Python环境验证安装成功,通常通过特定命令检查GPU版本是否正确。

       为了在Jupyter Notebook中利用该环境,需要安装ipykernel,并将环境写入notebook的kernel中。激活虚拟环境并打开Jupyter Notebook,通过命令确保内核安装成功。

       对于ConvLSTM核心源码的解读,重点在于理解模型的构建与参数设置。模型核心代码通常包括输入数据维度、模型结构、超参数配置等。以官方样例为例,构建模型时需关注样本整理、标签设置、卷积核数量等关键参数。例如,输入数据维度为(None,,,1),输出数据维度为(None,None,,,)。通过返回序列设置,可以控制模型输出的形态,是返回单个时间步的输出还是整个输出序列。

       在模型改造中,将彩色图像预测作为目标,需要调整模型的最后层参数,如将`return_sequence`参数更改为`False`,同时将`Conv3D`层修改为`Conv2D`层以适应预测彩色图像的需求。此外,选择合适的损失函数(如MAE)、优化器(如Adam)以及设置Metrics(如MAE)以便在训练过程中监控模型性能。

       通过上述步骤,不仅能够搭建出适合特定研究或项目需求的TensorFlow_gpu环境,还能够深入理解并灵活应用ConvLSTM模型。希望本文内容能够为读者提供有价值的指导,并期待在后续过程中持续改进和完善。

电脑macOS mojave ..6, 编译tensorflow2.6解决SSE4.1 SSE4.2 AVX指令集问题。

       针对macOS mojave ..6系统用户在编译tensorflow 2.6版本时遇到的SSE4.1、SSE4.2和AVX指令集问题,以下为解决步骤:

       首先,前往tensorflow源码下载页面,下载v2.6.0版本。

       然后,进入下载后的目录,定位至v2.6.0。

       接下来,准备必要的软件环境。确保已安装java和minconda。

       开始编译tensorflow时,关键在于使用优化指令集。在执行编译命令时,加入参数`-march=native`以进行cpu指令集优化。

       使用命令行进行编译:`bazelisk build -c opt --copt=-march=native //tensorflow/tools/pip_package:build_pip_package`。

       编译完成后,在/tmp/tensorflow_pkg目录下找到生成的wheel文件。使用pip进行安装,即可完成tensorflow 2.6版本的安装。

       完成编译与安装后,用户可根据需要下载tensorflow-2.6.0-cp-cpm-macosx___x_.whl文件。提取码为kkli。

探索TensorFlow核心组件系列之Session的运行源码分析

       TensorFlow作为一个前后端分离的计算框架,旨在实现前端在任何设备、任何位置上使用API构建模型,而不受硬件资源限制。那么,TensorFlow是如何建立前后端的连接呢?在这一过程中,Session起着关键桥梁作用,它连接前后端通道,并通过session.run()触发计算,将前端的计算图转化为graphdef pb格式发送至后端。后端接收此格式,将计算图重建、剪枝、分裂,并分配到设备上,最终在多个Executor上执行计算。

       Session管理着计算图、变量、队列、锁、设备和内存等多种资源,确保资源安全、高效地使用。在Session生命周期中,包含创建、运行、关闭和销毁四个阶段,确保模型运行的正确性和效率。

       在Session创建时,使用BaseSession初始化,通过调用TF_NewSessionRef创建实例。此过程涉及确定图实例、判断混合精度设置以及创建Session。在分布式框架中,Python通过swig自动生成的函数符号映射关系调用C++层实现。

       Session运行主要通过session.run()触发,该方法在BaseSession的run()中实现,涉及创建fetch处理器、获取最终fetches和targets,调用_do_run方法启动计算,并输出结果。在本地模式下,Session初始化会生成DirectSession对象。

       综上所述,Session在TensorFlow架构中扮演着核心角色,连接前后端,管理资源,并确保模型高效、安全地运行。

Tensorflow 编译加速器 XLA 源码深入解读

       XLA是Tensorflow内置的编译器,用于加速计算过程。然而,不熟悉其工作机制的开发者在实践中可能无法获得预期的加速效果,甚至有时会导致性能下降。本文旨在通过深入解读XLA的源码,帮助读者理解其内部机制,以便更好地利用XLA的性能优化功能。

       XLA的源码主要分布在github.com/tensorflow/tensorflow的多个目录下,对应不同的模块。使用XLA时,可以采用JIT(Just-In-Time)或AOT( Ahead-Of-Time)两种编译方式。JIT方式更为普遍,对用户负担较小,只需开启一个开关即可享受到加速效果。本文将专注于JIT的实现与理解。

       JIT通过在Tensorflow运行时,从Graph中选择特定子图进行XLA编译与运行,实现了对计算图的加速。Tensorflow提供了一种名为JIT的使用方式,它通过向Tensorflow注册多个优化PASS来实现这一功能。这些优化PASS的执行顺序决定了加速效果。

       核心的优化PASS包括但不限于EncapsulateXlaComputationsPass、MarkForCompilationPass、EncapsulateSubgraphsPass、BuildXlaOpsPass等。EncapsulateXlaComputationsPass负责将具有相同_xla_compile_id属性的算子融合为一个XlaLaunch,而XlaLaunch在运行时将子图编译并执行。

       AutoClustering则自动寻找适合编译的子图,将其作为Cluster进行优化。XlaCompileOp承载了Cluster的所有输入和子图信息,在运行时通过编译得到XlaExecutableClosure,最终由XlaRunOp执行。

       在JIT部分,关键在于理解和实现XlaCompilationCache::CompileStrict中的编译逻辑。此过程包括两步,最终结果封装在XlaCompilationResult和LocalExecutable中,供后续使用。

       tf2xla模块负责将Tensorflow Graph转化为XlaCompilationResult(HloModuleProto),实现从Tensorflow到XLA的转换。在tf2xla中定义的XlaOpKernel用于封装计算过程,并在GraphCompiler::Compile中实现每个Kernel的计算,即执行每个XlaOpKernel的Compile。

       xla/client模块提供了核心接口,用于构建计算图并将其转换为HloModuleProto。XlaBuilder构建计算图的结构,而XlaOpKernel通过使用这些基本原语描述计算过程,最终通过xla_builder的Build方法生成HloComputationProto。

       xla/service模块负责将HloModuleProto编译为可执行的Executable。该过程涉及多个步骤,包括LLVMCompiler的编译和优化,最终生成适合特定目标架构的可执行代码。此模块通过一系列的优化pass,如RunHloPasses和RunBackend,对HloModule进行优化和转换,最终编译为目标代码。

       本文旨在提供XLA源码的深度解读,帮助开发者理解其工作机制和实现细节。如有问题或疑问,欢迎指正与交流,共同探讨和学习。期待与您在下一篇文章中再次相遇。

copyright © 2016 powered by 皮皮网   sitemap