1.CesiumJS 源码杂谈 - 从光到 Uniform
2.nodejs EventEmitter 源码分析
3.图文剖析 big.js 四则运算源码
4.js引擎v8源码分析之Object(基于v8 0.1.5)
5.Three.js 游戏开发入门教程源码
6.konva.js 原理与源码解析
CesiumJS 源码杂谈 - 从光到 Uniform
CesiumJS 源码探索:光照与Uniform的源码转换之旅
CesiumJS 对光照的处理主要依赖于其底层API与WebGL着色器的交互。尽管它默认只支持一个太阳光,项目但通过DirectionalLight扩展,源码可模拟各种光照效果。项目光在CesiumJS中被转换为Uniform值,源码以统一的项目firefox看源码形式传递给着色器执行。
首先,源码CesiumJS的项目光照类型主要包括场景默认的太阳光和DirectionalLight,后者允许设定光照方向。源码例如,项目官方示例中的源码《Lighting》展示了如何运用DirectionalLight创建灯光效果。方向光多了一个方向属性,项目通常表示为单位向量。源码
在源码中,项目光照信息通过UniformState对象在每帧渲染时传递给Renderer。源码这个过程始于Scene.js模块的render函数,其中的uniformState会更新来自FrameState的光照参数。当Context对象执行DrawCommand时,ShaderProgram的_uniforms列表会填充来自uniformState的值,包括那些由AutomaticUniforms自动更新的,如光的属性。
光照Uniform在着色器中的应用十分广泛,如点云着色时使用czm_lightColor,冯氏着色法(Phong)材质通过czm_lightColor进行漫反射和高光计算,Globe.js则在GlobeFS片元着色器中使用czm_lightColor。在Model API的PBR着色法中,czm_lightColorHdr变量在光照阶段的计算中扮演重要角色。
总的来说,CesiumJS的华夏传承源码光照系统通过Uniform的转换,确保光照信息在复杂渲染流程中的顺畅传递。然而,深入研究光照材质,特别是在自定义光照效果方面,仍需要进一步学习实时渲染(RealTimeRendering)的知识。
nodejs EventEmitter 源码分析
EventEmitter 是 Node.js 中的事件管理器核心逻辑简单,主要聚焦于事件与函数或函数数组之间的关联。在 v..1 版本中,核心逻辑在实例的 _events 属性上展开,该属性是一个对象,其键为事件名称,值为事件对应的函数或函数数组。所有方法均围绕 _events 展开。
构造函数初始化 _events 属性,若实例本身未定义,则执行此操作。此操作涉及对实例原型的引用,通过 ObjectGetPrototypeOf 的使用来实现。函数 on 允许用户注册事件监听器,逻辑简单明了:判断同名事件是否已注册,无则注册;已有则将新监听器加入已有函数数组中。emit 方法触发事件,根据事件名称获取对应函数或函数数组,使用 ReflectApply 调用。此方法与 Function.prototype.apply 类似,但提供了更简洁的实现。
off 方法与 on 方法相似,但逻辑相反。php推广源码它获取事件监听器,若为函数,则直接删除;若为数组,则遍历删除指定监听器。此方法同样简洁,直接操作事件列表。
Reflect API 的使用在不同版本的 EventEmitter 中逐渐增多,例如将 Object.keys 替换为 Reflect.ownKeys,以更好地处理 Symbol 类型的事件名。反射方法,如 Reflect.apply,尽管在 V8 中源码显得复杂,但其执行逻辑与 Function.prototype.apply 相似,性能上并无显著提升,但提升了代码的可读性。
在最新版本 v.5.0 中,EventEmitter 的实现中采用 Reflect.ownKeys 更为合理,因为此方法能有效避免返回数组中无 Symbol 的问题。EventEmitter 的构造函数与 Stream 的关系展示了如何利用继承来扩展功能。Stream 通过继承 EventEmitter,实现了更简洁的 class 写法,未来可能进一步简化。
此外,文章还讨论了私有属性的使用,以及简易版 EventEmitter 的实现。简易版 EventEmitter 基本逻辑简洁,但不包含参数校验、异常处理和性能优化等生产环境所需的c 源码天空功能。实际生产环境中的 EventEmitter 实现则需额外处理这些复杂情况。
图文剖析 big.js 四则运算源码
big.js是一个小型且高效的JavaScript库,专门用于处理任意精度的十进制算术。
在常规项目中,算术运算可能会导致精度丢失,从而影响结果的准确性。big.js正是为了解决这一问题而设计的。与big.js类似的库还有bignumber.js和decimal.js,它们同样由MikeMcl创建。
作者在这里详细阐述了这三个库之间的区别。big.js是最小、最简单的任意精度计算库,它的方法数量和体积都是最小的。bignumber.js和decimal.js存储值的进制更高,因此在处理大量数字时,它们的速度会更快。对于金融类应用,bignumber.js可能更为合适,因为它能确保精度,除非涉及到除法操作。
本文将剖析big.js的解析函数和加减乘除运算的源码,以了解作者的设计思路。在四则运算中,除法运算最为复杂。
创建Big对象时,new操作符是可选的。构造函数中的关键代码如下,使用构造函数时可以不带new关键字。accelerated cpp源码如果传入的参数已经是Big的实例对象,则复制其属性,否则使用parse函数创建属性。
parse函数为实例对象添加三个属性,这种表示与IEEE 双精度浮点数的存储方式类似。JavaScript的Number类型就是使用位二进制格式IEEE 值来表示的,其中位用于表示3个部分。
以下分析parse函数转化的详细过程,以Big('')、Big('0.')、Big('e2')为例。注意:Big('e2')中e2以字符串形式传入才能检测到e,Number形式的Big(e2)在执行parse前会被转化为Big()。
最后,Big('')、Big('-0.')、Big('e2')将转换为...
至此,parse函数逻辑结束。接下来分别剖析加减乘除运算。
加法运算的源码中,k用于保存进位的值。上面的过程可以用图例表示...
减法运算的源码与加法类似,这里不再赘述。减法的核心逻辑如下...
减法的过程可以用图例表示,其中xc表示被减数,yc表示减数...
乘法运算的源码中,主要逻辑如下...
描述的是我们以前在纸上进行乘法运算的过程。以*为例...
除法运算中,对于a/b,a是被除数,b是除数...
注意事项:big.js使用数组存储值,类似于高精度计算,但它是在数组中每个位置存储一个值,然后对每个位置进行运算。对于超级大的数字,big.js的算术运算可能不如bignumber.js快...
在使用big.js进行运算时,有时没有设置足够大的精度会导致结果不准确...
总结:本文剖析了big.js的解析函数和四则运算源码,用图文详细描述了运算过程,逐步还原了作者的设计思路。如有不正确之处或不同见解,欢迎各位提出。
js引擎v8源码分析之Object(基于v8 0.1.5)
在V8引擎中,Object是所有JavaScript对象在底层C++实现的核心基类,它提供了诸如类型判断、属性操作和类型转换等公共功能。
V8的对象采用4字节对齐,通过地址的低两位来识别对象的类型。作为Object的子类,堆对象(HeapObject)有其独特的属性,如map,它记录了对象的类型(type)和大小(size)。type字段用于识别C++对象类型,低位8位用于区分字符串类型,高位1位标识非字符串,低7位则存储字符串的子类型信息。
对于C++对象类型的判断,V8引擎定义了一系列宏。这些宏包括isType函数,用于确定对象的具体类型。此外,还有其他函数,如解包数字、转换为smi对象、检查索引的有效性、实现JavaScript的IsInstanceOf逻辑,以及将非对象类型转换为对象(ToObject)等。
对于数字处理,smi(Small Integers)在V8中用于表示整数,其长度为位。ToBoolean函数用于判断变量的真假,而属性查找则通过依赖子类的特定查找函数来实现,包括查找原型对象。
由于后续分析将深入探讨Object的子类和这些函数的详细实现,这里只是概述了Object类及其关键功能的概览。
Three.js 游戏开发入门教程源码
随着技术的进步,过去创建和发布游戏的传统方式——如使用Unity或Unreal引擎——已不再是唯一的路径。在浏览器中直接为用户提供游戏体验变得可能,得益于JavaScript性能的提升和硬件加速的普及。
本文将指导你如何利用Three.js,一个轻量级的3D库,步入游戏开发。首先,让我们理解Three.js是什么以及为何它是游戏开发的理想选择。
Three.js详解
Three.js在GitHub上的描述,将其概括为“一个易于使用的跨浏览器3D库”。它简化了在屏幕上绘制3D对象,避免了直接与WebGL的复杂交互,即使是小型项目也能节省大量时间。与Unity或Unreal等全面的游戏引擎相比,Three.js更专注于核心的3D渲染,提供示例帮助开发者快速上手。
使用Three.js,你可以创建一个简单的游戏概念,如玩家控制火箭飞船穿越星球,收集能量晶体,同时管理飞船的护盾以避免碰撞。游戏的难度会随着玩家的进度逐渐提升,速度加快。
游戏开发步骤
在创建游戏时,我们需要解决的问题包括摄像机的移动、资源限制和无限运动的实现。Three.js提供了一种将摄像机保持静止,而动态改变场景的方法,这有助于节省资源并保持性能。
项目配置涉及设置构建环境,如使用Webpack管理和TypeScript提供类型安全。在场景设置中,我们需要创建场景、相机和渲染器,以及初始化函数来设置游戏的基本设置。同时,动画和渲染循环是游戏流畅运行的关键。
随着游戏的进展,你将学习如何添加水体、天空、光照、模型和用户输入,以及实现碰撞检测和游戏界面。最后,结束语部分强调了使用Three.js开发游戏的吸引力,尤其是对于寻求无下载安装门槛的用户。
konva.js 原理与源码解析
Konva是一个基于2D canvas的类库,适用于桌面和移动设备,提供图形组件、事件系统、变换、高性能动画、节点嵌套与分层等功能。Konva与FabricJS都是高性能2D渲染库,适合编辑器场景,各有优势。
Konva架构基于图形树,类似DOM结构,通过add和remove操作增删节点。核心包括SceneContext和HitContext,实现绘制填充和描边。Konva通过Canvas缓存绘制图形信息,用户点击时判断击中图形。
拾取方案中,Konva在SceneCanvas上绘制图形同时在HitCanvas上绘制,使用随机索引颜色,用户点击时根据缓存判断图形。流程包括获取交集、计算击中图形,触发交互事件。
Konva的Node类是图形的底层封装,包含各种方法,所有Konva节点最终继承自Node。渲染流程包括添加图形、绘制、缓存和重绘。Node类的draw方法调用drawScene和drawHit,最终执行具体图形类的绘制方法。
属性更新流程使用Factory模块绑定属性,通过getter和setter实现,统一调用Node._setAttr方法更新属性并批量重绘。Konva历史源码基于ES3定义类,Factory模块在代码中添加属性绑定逻辑。
总体而言,Konva的结构设计、图形绘制、交互处理和属性更新机制共同构建了一个高效、灵活的2D图形渲染框架。
2024-11-25 23:49
2024-11-25 23:28
2024-11-25 22:48
2024-11-25 21:35
2024-11-25 21:32
2024-11-25 21:08