皮皮网
皮皮网

【harmonyos系统源码】【ch源码网】【linux源码执行】rdd源码分析

来源:图片表单源码 发表时间:2024-11-25 11:06:34

1.为什么Spark发展不如Hadoop
2.关于笛卡尔积CartesianProduct
3.有什么关于 Spark 的码分书推荐?
4.Spark Core读取ES的分区问题分析

rdd源码分析

为什么Spark发展不如Hadoop

       Spark是一个基于RAM计算的开源码ComputerCluster运算系统,目的是更快速地进行数据分析。Spark早期的核心部分代码只有3万行。Spark提供了与HadoopMap/Reduce相似的分散式运算框架,但基于RAM和优化设计,因此在交换式数据分析和datamining的Workload中表现不错。

       è¿›å…¥å¹´ä»¥åŽï¼ŒSpark开源码生态系统大幅增长,已成为大数据范畴最活跃的开源码项目之一。Spark之所以有如此多的关注,原因主要是因为Spark具有的高性能、高灵活性、与Hadoop生态系统完美融合等三方面的特点。

       é¦–先,Spark对分散的数据集进行抽样,创新地提出RDD(ResilientDistributedDataset)的概念,所有的统计分析任务被翻译成对RDD的基本操作组成的有向无环图(DAG)。RDD可以被驻留在RAM中,往后的任务可以直接读取RAM中的数据;同时分析DAG中任务之间的依赖性可以把相邻的任务合并,从而减少了大量不准确的结果输出,极大减少了HarddiskI/O,使复杂数据分析任务更高效。从这个推算,如果任务够复杂,Spark比Map/Reduce快一到两倍。

       å…¶æ¬¡ï¼ŒSpark是一个灵活的运算框架,适合做批次处理、工作流、交互式分析、流量处理等不同类型的应用,因此Spark也可以成为一个用途广泛的运算引擎,并在未来取代Map/Reduce的地位。

       æœ€åŽï¼ŒSpark可以与Hadoop生态系统的很多组件互相操作。Spark可以运行在新一代资源管理框架YARN上,它还可以读取已有并存放在Hadoop上的数据,这是个非常大的优势。

       è™½ç„¶Spark具有以上三大优点,但从目前Spark的发展和应用现状来看,Spark本身也存在很多缺陷,主要包括以下几个方面:

       â€“稳定性方面,由于代码质量问题,Spark长时间运行会经常出错,在架构方面,由于大量数据被缓存在RAM中,Java回收垃圾缓慢的情况严重,导致Spark性能不稳定,在复杂场景中SQL的性能甚至不如现有的Map/Reduce。

       â€“不能处理大数据,单独机器处理数据过大,或者由于数据出现问题导致中间结果超过RAM的大小时,常常出现RAM空间不足或无法得出结果。然而,Map/Reduce运算框架可以处理大数据,在这方面,Spark不如Map/Reduce运算框架有效。

       â€“不能支持复杂的SQL统计;目前Spark支持的SQL语法完整程度还不能应用在复杂数据分析中。在可管理性方面,SparkYARN的结合不完善,这就为使用过程中埋下隐忧,容易出现各种难题。

       è™½ç„¶Spark活跃在Cloudera、MapR、Hortonworks等众多知名大数据公司,但是如果Spark本身的缺陷得不到及时处理,将会严重影响Spark的普及和发展。

关于笛卡尔积CartesianProduct

       关于笛卡尔积与shuffle的关系,结论是码分笛卡尔积不会产生shuffle。在分析笛卡尔积的码分源码后,我们发现其运行原理在map端执行,码分并未涉及shuffle过程。码分因此,码分harmonyos系统源码从结果中得出,码分笛卡尔积操作不会引发数据重组现象。码分

       至于窄依赖的码分定义,网上多数描述存在一定的码分混淆。窄依赖实际上指的码分是子RDD的每个分区依赖于父RDD的部分分区。在理解上,码分可以将窄依赖理解为一个父RDD的码分分区被多个子RDD的分区共享使用,但这些子RDD的码分分区仅依赖于父RDD的特定部分,而非整个分区。码分这种定义在Spark 1.0版本的注释中有所体现,强调了依赖的局部性。

       关于join操作是ch源码网否一定会产生shuffle,答案并非绝对。在某些特定场景下,如数据量较小、数据分布均匀且内存充足时,join操作可能不会导致数据shuffle。重要的是在实际编程和优化过程中积累经验,学习如何根据不同情况选择合适的join策略,从而提高效率。精读源码是一种有效的技能培养方式,能够帮助深入理解数据处理过程,提升解决问题的能力。

       对于希望在职场中脱颖而出的个人,培养自己的优势是关键。无论是通过技术专长、项目管理能力还是团队协作,构建自己的独特竞争力是至关重要的。如果您对此有所兴趣,linux源码执行欢迎加入硬核源码学习社群(付费)。

       社群提供每周六的直播课程,包含历史录屏资源,学员可以随到随学,并且有长期的指导陪伴。如果您对这个社群感兴趣,欢迎了解详情。

有什么关于 Spark 的书推荐?

       《大数据Spark企业级实战》本书共包括章,每章的主要内容如下。

       第一章回答了为什么大型数据处理平台都要选择SPARK。为什么spark如此之快?星火的理论基础是什么?spark如何使用专门的技术堆栈来解决大规模数据处理的需要?第二章回答了如何从头构建Hadoop集群的问题。如何构建基于Hadoop集群的星火集群?如何测试火星的质量?第三章是如何在一个集成开发环境中开发和运行星火计划。如何开发和测试IDA中的spark代码?

       在这4章中,RDD、RDD和spark集成战斗用例API的作用类型将用于实际的战斗RDD。

第四章分析了星火独立模式的设计与实现、星火集群模型和星火客户端模式。小说源码打包

第五章首先介绍了spark core,然后通过对源代码的分析,分析了spark的源代码和源代码,仔细分析了spark工作的整个生命周期,最后分享了spark性能优化的内容。

       这说明了一步一步的火花的特点是使用了大约个实际案例,并分析了spark GraphX的源代码。

第八章,在星火SQL实践编程实践的基础上,详细介绍了星火SQL的内容。第九章讲了从快速启动机器学习前9章,MLlib的分析框架,基于线性回归、聚类,并解决协同过滤算法,源代码分析和案例启示MLlib一步一步,最后由基本MLlib意味着静态和朴素贝叶斯算法,决策树分析和实践,进一步提高的主要引发机器学习技巧。第十章详细描述了分布式存储文件系统、超轻粒子和超轻粒子的设计、实现、部署和使用。第十一章主要介绍了火花流的平台源码300原理、源代码和实际情况。第十二章介绍了spark多语种编程的特点,并通过实例介绍了spark多语言编程。最后,将一个综合的例子应用到spark多语言编程的实践中。第十三章首先介绍了R语言的基本介绍和实践操作,介绍了使用sparkr和编码的火花,并帮助您快速使用R语言和数据处理能力。在第十四章中,详细介绍了电火花放电的常见问题及其调谐方法。首先介绍了个问题,并对它们的解决方案进行了优化。然后,从内存优化、RDD分区、对象和操作性能优化等方面对常见性能优化问题进行了阐述,最后阐述了火花的最佳实践。

       附录从spark的角度解释了Scala,并详细解释了Scala函数编程和面向对象编程。

Spark Core读取ES的分区问题分析

       撰写本文的初衷是因近期一位星球球友面试时,面试官询问了Spark分析ES数据时,生成的RDD分区数与哪些因素相关。

       初步推测,这与分片数有关,但具体关系是什么呢?以下是两种可能的关系:

       1).类似于KafkaRDD的分区与kafka topic分区数的关系,一对一。

       2).ES支持游标查询,那么是否可以对较大的ES索引分片进行拆分,形成多个RDD分区呢?

       下面,我将与大家共同探讨源码,了解具体情况。

       1.Spark Core读取ES

       ES官网提供了elasticsearch-hadoop插件,对于ES 7.x,hadoop和Spark版本的支持如下:

       在此,我使用的ES版本为7.1.1,测试用的Spark版本为2.3.1,没有问题。整合es和spark,导入相关依赖有两种方式:

       a,导入整个elasticsearch-hadoop包

       b,仅导入spark模块的包

       为了方便测试,我在本机启动了一个单节点的ES实例,简单的测试代码如下:

       可以看到,Spark Core读取RDD主要有两种形式的API:

       a,esRDD。这种返回的是一个tuple2类型的RDD,第一个元素是id,第二个是一个map,包含ES的document元素。

       b,esJsonRDD。这种返回的也是一个tuple2类型的RDD,第一个元素依然是id,第二个是json字符串。

       尽管这两种RDD的类型不同,但它们都是ScalaEsRDD类型。

       要分析Spark Core读取ES的并行度,只需分析ScalaEsRDD的getPartitions函数。

       2.源码分析

       首先,导入源码github.com/elastic/elasticsearch-hadoop这个gradle工程,可以直接导入idea,然后切换到7.x版本。

       接下来,找到ScalaEsRDD,发现getPartitions方法是在其父类中实现的,方法内容如下:

       esPartitions是一个lazy型的变量:

       这种声明的原因是什么呢?

       lazy+transient的原因大家可以思考一下。

       RestService.findPartitions方法只是创建客户端获取分片等信息,然后调用,分两种情况调用两个方法:

       a).findSlicePartitions

       这个方法实际上是在5.x及以后的ES版本,同时配置了

       之后,才会执行。实际上就是将ES的分片按照指定大小进行拆分,必然要先进行分片大小统计,然后计算出拆分的分区数,最后生成分区信息。具体代码如下:

       实际上,分片就是通过游标方式,对_doc进行排序,然后按照分片计算得到的分区偏移进行数据读取,组装过程是通过SearchRequestBuilder.assemble方法实现的。

       这个实际上会浪费一定的性能,如果真的要将ES与Spark结合,建议合理设置分片数。

       b).findShardPartitions方法

       这个方法没有疑问,一个RDD分区对应于ES index的一个分片。

       3.总结

       以上就是Spark Core读取ES数据时,分片和RDD分区的对应关系分析。默认情况下,一个ES索引分片对应Spark RDD的一个分区。如果分片数过大,且ES版本在5.x及以上,可以配置参数

       进行拆分。

相关栏目:休闲