【kdj 多空源码】【人脉营销源码在哪里】【在线加密解密html源码】5u源码

时间:2024-11-28 18:21:56 分类:俊天宋金指标源码 来源:hook多开源码

1.如何在虚拟机上使用keil uVision5编译程序
2.UE5 ModelingMode & GeometryScript源码学习(一)
3.Go看源码必会知识之unsafe包
4.检查网页源码快捷键(网页看源码快捷键)
5.UE动画优化之URO(UpdateRateOptimizations)源码解析
6.UE5引擎Paper2D插件上的源码PaperFlipbookComponent.h文件源码解读分析

5u源码

如何在虚拟机上使用keil uVision5编译程序

       keil uVision5是KEIL公司开发的一款集成开发环境(IDE),目前最新的版本是uVision5。

       他在功能上和Eclipse类似,源码提供源代码编辑、编译设置等,源码但是源码这款软件是需要付费才能使用的,所以大家在使用时需要注意。源码下面我们介绍一下如何在虚拟上使用这款软件编译下载程序的源码kdj 多空源码吧。

       进入虚拟机系统后,源码双击运行keil uVison5软件

       如果之前有打开过工程,源码则软件会默认打开上一次打开的源码,如果没有则从菜单Project中打开工程

       打开工程文件后,源码点击工具栏中的源码编译图标开始编译工程

       当然也可以选择从Project菜单中选择“Build Target”选项来编译工程

       编译完成后开始下载,下载前需要把USB加载进来,源码不然识别不了设备,源码从虚拟机的源码“设备”菜单中添加USB设备,如下图所示

       点击“LOAD”图标开始下载程序,源码也可以从菜单中选择菜单项下载

       底部出现下载进度条则表示开始下载,如果出错请根据提示设置

       下载完成后程序自动运行,状态栏会有相应的提示”Application running ...“。

UE5 ModelingMode & GeometryScript源码学习(一)

       前言

       ModelingMode是虚幻引擎5.0后的新增功能,用于直接在引擎中进行3D建模,无需外接工具,实现快速原型设计和特定需求的模型创建。GeometryScript是用于通过编程方式创建和操控3D几何体的系统,支持蓝图或Python脚本,提供灵活控制能力。

       本文主要围绕ModelingMode与GeometryScript源码学习展开,涵盖DMC简介、查找感兴趣功能源码、动态网格到静态网格的代码介绍。

       起因

       在虚幻4中,通过RuntimeMeshComponent或ProceduralMeshComponent组件实现简单模型的程序化生成。动态网格组件(DynamicMeshComponent)在UE5中提供了额外功能,如三角面级别处理、转换为StaticMesh/Volume、烘焙贴图和编辑UV等。

       将动态网格对象转换为静态网格对象时,发现官方文档对DMC与PMC对比信息不直接涉及此转换。通过搜索发现,DynamicMesh对象转换为StaticMesh对象的代码位于Source/Runtime/MeshConversion目录下的UE::Modeling::CreateMeshObject函数中。

       在UE::Modeling::CreateMeshObject函数内,使用UEditorModelingObjectsCreationAPI对象进行动态网格到静态网格的转换,通过HasMoveVariants()函数接受右值引用参数。UEditorModelingObjectsCreationAPI::CreateMeshObject函数进一步处理转换参数,UE::Modeling::CreateStaticMeshAsset函数负责创建完整的静态网格资产。

       总结转换流程,DynamicMesh对象首先收集世界、变换、资产名称和材质信息,通过FCreateMeshObjectParams对象传递给UE::Modeling::CreateMeshObject函数,该函数调用UE::Modeling::CreateStaticMeshAsset函数创建静态网格资产。

       转换为静态网格后,程序创建了一个静态网格Actor和组件。此过程涉及静态网格属性设置,最终返回FCreateMeshObjectResult对象表示转换成功。

       转换静态网格为Volume、动态网格同样在相关函数中实现。

       在Modeling Mode中添加基础形状涉及UInteractiveToolManager::DeactivateToolInternal函数,当接受基础形状时,调用UAddPrimitiveTool::GenerateAsset函数,根据面板选择的输出类型创建模型。

       最后,人脉营销源码在哪里UAddPrimitiveTool::Setup函数创建PreviewMesh对象,UAddPrimitiveTool::UpdatePreviewMesh()函数中通过UAddPrimitiveTool::GenerateMesh生成网格数据填充FDynamicMesh3对象,进而更新到PreviewMesh中。

       文章总结了Modeling Mode与GeometryScript源码的学习路径,从动态网格到静态网格的转换、基础形状添加到输出类型对应函数,提供了一条完整的流程概述。

Go看源码必会知识之unsafe包

       前言

       有看源码的朋友应该会发现,Go标准库中大量使用了unsafe.pointer,要想更好的理解源码实现,就要知道unsafe.pointer到底是什么?所以今天就与大家来聊一聊unsafe包。

什么是unsafe

       众所周知,Go语言被设计成一门强类型的静态语言,那么他的类型就不能改变了,静态也是意味着类型检查在运行前就做了。所以在Go语言中是不允许两个指针类型进行转换的,使用过C语言的朋友应该知道这在C语言中是可以实现的,Go中不允许这么使用是处于安全考虑,毕竟强制转型会引起各种各样的麻烦,有时这些麻烦很容易被察觉,有时他们却又隐藏极深,难以察觉。大多数读者可能不明白为什么类型转换是不安全的,这里用C语言举一个简单的例子:

int main(){ double pi = 3.;double *pv = πvoid *temp = pd;int *p = temp;}

       在标准C语言中,任何非void类型的指针都可以和void类型的指针相互指派,也可以通过void类型指针作为中介,实现不同类型的指针间接相互转换。上面示例中,指针pv指向的空间本是一个双精度数据,占8个字节,但是经过转换后,p指向的是一个4字节的int类型。这种发生内存截断的设计缺陷会在转换后进行内存访问是存在安全隐患。我想这就是Go语言被设计成强类型语言的原因之一吧。

       虽然类型转换是不安全的,但是在一些特殊场景下,使用了它,可以打破Go的类型和内存安全机制,可以绕过类型系统低效,提高运行效率。所以Go标准库中提供了一个unsafe包,之所以叫这个名字,就是不推荐大家使用,但是不是不能用,如果你掌握的特别好,还是可以实践的。

unsafe 实现原理

       在使用之前我们先来看一下unsafe的源码部分,标准库unsafe包中只提供了3``种方法,分别是:

func Sizeof(x ArbitraryType) uintptrfunc Offsetof(x ArbitraryType) uintptrfunc Alignof(x ArbitraryType) uintptr

       Sizeof(x ArbitrayType)方法主要作用是用返回类型x所占据的字节数,但并不包含x所指向的内容的大小,与C语言标准库中的Sizeof()方法功能一样,比如在位机器上,一个指针返回大小就是4字节。

       Offsetof(x ArbitraryType)方法主要作用是返回结构体成员在内存中的位置离结构体起始处(结构体的第一个字段的偏移量都是0)的字节数,即偏移量,我们在注释中看一看到其入参必须是一个结构体,其返回值是一个常量。

       Alignof(x ArbitratyType)的主要作用是返回一个类型的对齐值,也可以叫做对齐系数或者对齐倍数。对齐值是在线加密解密html源码一个和内存对齐有关的值,合理的内存对齐可以提高内存读写的性能。一般对齐值是2^n,最大不会超过8(受内存对齐影响).获取对齐值还可以使用反射包的函数,也就是说:unsafe.Alignof(x)等价于reflect.TypeOf(x).Align()。对于任意类型的变量x,unsafe.Alignof(x)至少为1。对于struct结构体类型的变量x,计算x每一个字段f的unsafe.Alignof(x,f),unsafe.Alignof(x)等于其中的最大值。对于array数组类型的变量x,unsafe.Alignof(x)等于构成数组的元素类型的对齐倍数。没有任何字段的空struct{ }和没有任何元素的array占据的内存空间大小为0,不同大小为0的变量可能指向同一块地址。

       细心的朋友会发发现这三个方法返回的都是uintptr类型,这个目的就是可以和unsafe.poniter类型相互转换,因为*T是不能计算偏移量的,也不能进行计算,但是uintptr是可以的,所以可以使用uintptr类型进行计算,这样就可以可以访问特定的内存了,达到对不同的内存读写的目的。三个方法的入参都是ArbitraryType类型,代表着任意类型的意思,同时还提供了一个Pointer指针类型,即像void *一样的通用型指针。

type ArbitraryType inttype Pointer *ArbitraryType// uintptr 是一个整数类型,它足够大,可以存储type uintptr uintptr

       上面说了这么多,可能会有点懵,在这里对三种指针类型做一个总结:

       *T:普通类型指针类型,用于传递对象地址,不能进行指针运算。

       unsafe.poniter:通用指针类型,用于转换不同类型的指针,不能进行指针运算,不能读取内存存储的值(需转换到某一类型的普通指针)

       uintptr:用于指针运算,GC不把uintptr当指针,uintptr无法持有对象。uintptr类型的目标会被回收。

       三者关系就是:unsafe.Pointer是桥梁,可以让任意类型的指针实现相互转换,也可以将任意类型的指针转换为uintptr进行指针运算,也就说uintptr是用来与unsafe.Pointer打配合,用于指针运算。画个图表示一下:

       基本原理就说到这里啦,接下来我们一起来看看如何使用~

unsafe.Pointer基本使用

       我们在上一篇分析atomic.Value源码时,看到atomic/value.go中定义了一个ifaceWords结构,其中typ和data字段类型就是unsafe.Poniter,这里使用unsafe.Poniter类型的原因是传入的值就是interface{ }类型,使用unsafe.Pointer强转成ifaceWords类型,这样可以把类型和值都保存了下来,方便后面的写入类型检查。截取部分代码如下:

// ifaceWords is interface{ } internal representation.type ifaceWords struct { typunsafe.Pointer data unsafe.Pointer}// Load returns the value set by the most recent Store.// It returns nil if there has been no call to Store for this Value.func (v *Value) Load() (x interface{ }) { vp := (*ifaceWords)(unsafe.Pointer(v))for { typ := LoadPointer(&vp.typ) // 读取已经存在值的类型/**..... 中间省略**/// First store completed. Check type and overwrite data.if typ != xp.typ { //当前类型与要存入的类型做对比 panic("sync/atomic: store of inconsistently typed value into Value")}}

       上面就是源码中使用unsafe.Pointer的一个例子,有一天当你准备读源码时,unsafe.pointer的使用到处可见。好啦,接下来我们写一个简单的例子,看看unsafe.Pointer是如何使用的。

func main(){ number := 5 pointer := &number fmt.Printf("number:addr:%p,熊猫取图程序源码 value:%d\n",pointer,*pointer) floatNumber := (*float)(unsafe.Pointer(pointer)) *floatNumber = *floatNumber + 3 fmt.Printf("float:addr:%p, value:%f\n",floatNumber,*floatNumber)}

       运行结果:

number:addr:0xc, value:5float:addr:0xc, value:3.

       由运行可知使用unsafe.Pointer强制类型转换后指针指向的地址是没有改变,只是类型发生了改变。这个例子本身没什么意义,正常项目中也不会这样使用。

       总结一下基本使用:先把*T类型转换成unsafe.Pointer类型,然后在进行强制转换转成你需要的指针类型即可。

Sizeof、Alignof、Offsetof三个函数的基本使用

       先看一个例子:

type User struct { Name string Age uint Gender bool // 男:true 女:false 就是举个例子别吐槽我这么用。。。。}func func_example(){ // sizeof fmt.Println(unsafe.Sizeof(true)) fmt.Println(unsafe.Sizeof(int8(0))) fmt.Println(unsafe.Sizeof(int())) fmt.Println(unsafe.Sizeof(int())) fmt.Println(unsafe.Sizeof(int())) fmt.Println(unsafe.Sizeof("asong")) fmt.Println(unsafe.Sizeof([]int{ 1,3,4})) // Offsetof user := User{ Name: "Asong", Age: ,Gender: true} userNamePointer := unsafe.Pointer(&user) nNamePointer := (*string)(unsafe.Pointer(userNamePointer)) *nNamePointer = "Golang梦工厂" nAgePointer := (*uint)(unsafe.Pointer(uintptr(userNamePointer) + unsafe.Offsetof(user.Age))) *nAgePointer = nGender := (*bool)(unsafe.Pointer(uintptr(userNamePointer)+unsafe.Offsetof(user.Gender))) *nGender = false fmt.Printf("u.Name: %s, u.Age: %d,u.Gender: %v\n", user.Name, user.Age,user.Gender) // Alignof var b bool var i8 int8 var i int var i int var f float var s string var m map[string]string var p *int fmt.Println(unsafe.Alignof(b)) fmt.Println(unsafe.Alignof(i8)) fmt.Println(unsafe.Alignof(i)) fmt.Println(unsafe.Alignof(i)) fmt.Println(unsafe.Alignof(f)) fmt.Println(unsafe.Alignof(s)) fmt.Println(unsafe.Alignof(m)) fmt.Println(unsafe.Alignof(p))}

       为了省事,把三个函数的使用示例放到了一起,首先看sizeof方法,我们可以知道各个类型所占字节大小,这里重点说一下int类型,Go语言中的int类型的具体大小是跟机器的 CPU位数相关的。如果 CPU 是 位的,那么int就占4字节,如果 CPU是位的,那么 int 就占8 字节,这里我的电脑是位的,所以结果就是8字节。

       然后我们在看Offsetof函数,我想要修改结构体中成员变量,第一个成员变量是不需要进行偏移量计算的,直接取出指针后转换为unsafe.pointer,在强制给他转换成字符串类型的指针值即可。如果要修改其他成员变量,需要进行偏移量计算,才可以对其内存地址修改,所以Offsetof方法就可返回成员变量在结构体中的偏移量,也就是返回结构体初始位置到成员变量之间的字节数。看代码时大家应该要住uintptr的使用,不可以用一个临时变量存储uintptr类型,前面我们提到过用于指针运算,GC不把uintptr当指针,uintptr无法持有对象。uintptr类型的目标会被回收,所以你不知道他什么时候会被GC掉,那样接下来的内存操作会发生什么样的错误,咱也不知道。比如这样一个例子:

// 切记不要这样使用p1 := uintptr(userNamePointer)nAgePointer := (*uint)(unsafe.Pointer(p1 + unsafe.Offsetof(user.Age)))

       最后看一下Alignof函数,主要是获取变量的对齐值,除了int、uintptr这些依赖CPU位数的类型,基本类型的对齐值都是固定的,结构体中对齐值取他的成员对齐值的最大值,结构体的对齐涉及到内存对齐,我们在下面详细介绍。

经典应用:string与[]byte的相互转换

       实现string与byte的转换,正常情况下,我们可能会写出这样的标准转换:

// string to []bytestr1 := "Golang梦工厂"by := []byte(s1)// []byte to stringstr2 := string(by)

       使用这种方式进行转换都会涉及底层数值的拷贝,所以想要实现零拷贝,我们可以使用unsafe.Pointer来实现,通过强转换直接完成指针的指向,从而使string和[]byte指向同一个底层数据。在reflect包中有·string和slice对应的结构体,他们的分别是:

type StringHeader struct { Data uintptr Lenint}type SliceHeader struct { Data uintptr Lenint Capint}

       StringHeader代表的是string运行时的表现形式(SliceHeader同理),通过对比string和slice运行时的模板网站整站源码在哪表达可以看出,他们只有一个Cap字段不同,所以他们的内存布局是对齐的,所以可以通过unsafe.Pointer进行转换,因为可以写出如下代码:

func Sizeof(x ArbitraryType) uintptrfunc Offsetof(x ArbitraryType) uintptrfunc Alignof(x ArbitraryType) uintptr0

       上面的代码我们通过重新构造slice header和string header完成了类型转换,其实[]byte转换成string可以省略掉自己构造StringHeader的方式,直接使用强转就可以,因为string的底层也是[]byte,强转会自动构造,省略后的代码如下:

func Sizeof(x ArbitraryType) uintptrfunc Offsetof(x ArbitraryType) uintptrfunc Alignof(x ArbitraryType) uintptr1

       虽然这种方式更高效率,但是不推荐大家使用,前面也提高到了,这要是不安全的,使用当不当会出现极大的隐患,一些严重的情况recover也不能捕获。

内存对齐

       现在计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但是实际情况是在访问特定类型变量的时候经常在特定的内存地址访问,这就需要各种类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就对齐。

       对齐的作用和原因:CPU访问内存时,并不是逐个字节访问,而是以字长(word size)单位访问。比如位的CPU,字长为4字节,那么CPU访问内存的单位也是4字节。这样设计可以减少CPU访问内存的次数,加大CPU访问内存的吞吐量。假设我们需要读取8个字节的数据,一次读取4个字节那么就只需读取2次就可以。内存对齐对实现变量的原子性操作也是有好处的,每次内存访问都是原子的,如果变量的大小不超过字长,那么内存对齐后,对该变量的访问就是原子的,这个特性在并发场景下至关重要。

       我们来看这样一个例子:

func Sizeof(x ArbitraryType) uintptrfunc Offsetof(x ArbitraryType) uintptrfunc Alignof(x ArbitraryType) uintptr2

       从结果可以看出,字段放置不同的顺序,占用内存也不一样,这就是因为内存对齐影响了struct的大小,所以有时候合理的字段可以减少内存的开销。下面我们就一起来分析一下内存对齐,首先要明白什么是内存对齐的规则,C语言的对齐规则与Go语言一样,所以C语言的对齐规则对Go同样适用:

       对于结构的各个成员,第一个成员位于偏移为0的位置,结构体第一个成员的偏移量(offset)为0,以后每个成员相对于结构体首地址的 offset 都是该成员大小与有效对齐值中较小那个的整数倍,如有需要编译器会在成员之间加上填充字节。

       除了结构成员需要对齐,结构本身也需要对齐,结构的长度必须是编译器默认的对齐长度和成员中最长类型中最小的数据大小的倍数对齐。

       好啦,知道规则了,我们现在来分析一下上面的例子,根据我的mac使用的位CPU,对齐参数是8来分析,int、[]int、string、bool对齐值分别是4、8、8、1,占用内存大小分别是4、、、1,我们先根据第一条对齐规则分析User1:

       第一个字段类型是int,对齐值是4,大小为4,所以放在内存布局中的第一位.

       第二个字段类型是[]int,对齐值是8,大小为,所以他的内存偏移值必须是8的倍数,所以在当前user1中,就不能从第4位开始了,必须从第5位开始,也就偏移量为8。第4,5,6,7位由编译器进行填充,一般为0值,也称之为空洞。第9位到第位为第二个字段B.

       第三个字段类型是string,对齐值是8,大小为,所以他的内存偏移值必须是8的倍数,因为user1前两个字段就已经排到了第位,所以下一位的偏移量正好是,正好是字段C的对齐值的倍数,不用填充,可以直接排列第三个字段,也就是从第位到位第三个字段C.

       第三个字段类型是bool,对齐值是1,大小为1,所以他的内存偏移值必须是1的倍数,因为user1前两个字段就已经排到了第位,所以下一位的偏移量正好是。正好是字段D的对齐值的倍数,不用填充,可以直接排列到第四个字段,也就是从到第位是第三个字段D.

       好了现在第一条内存对齐规则后,内存长度已经为字节,我们开始使用内存的第2条规则进行对齐。根据第二条规则,默认对齐值是8,字段中最大类型程度是,取最小的那一个,所以求出结构体的对齐值是8,我们目前的内存长度是,不是8的倍数,所以需要补齐,所以最终的结果就是,补了7位。

       说了这么多,画个图看一下吧:

       现在你们应该懂了吧,按照这个思路再去分析其他两个struct吧,这里就不再分析了。

       对于内存对齐这里还有一最后需要注意的知识点,空struct不占用任何存储空间,空 struct{ } 大小为 0,作为其他 struct 的字段时,一般不需要内存对齐。但是有一种情况除外:即当 struct{ } 作为结构体最后一个字段时,需要内存对齐。因为如果有指针指向该字段, 返回的地址将在结构体之外,如果此指针一直存活不释放对应的内存,就会有内存泄露的问题(该内存不因结构体释放而释放)。来看一个例子:

func Sizeof(x ArbitraryType) uintptrfunc Offsetof(x ArbitraryType) uintptrfunc Alignof(x ArbitraryType) uintptr3

       简单来说,对于任何占用0大小空间的类型,像struct { }或者[0]byte这些,如果该类型出现在结构体末尾,那么我们就假设它占用1个字节的大小。因此对于test1结构体,他看起来就是这样:`

func Sizeof(x ArbitraryType) uintptrfunc Offsetof(x ArbitraryType) uintptrfunc Alignof(x ArbitraryType) uintptr4

       因此在内存对齐时,最后结构体占用的字节就是8了。

       重点要注意的问题:不要在结构体定义的最后添加零大小的类型

总结

       好啦,终于又到文章的末尾了,我们来简单的总结一下,unsafe 包绕过了 Go 的类型系统,达到直接操作内存的目的,使用它有一定的风险性。但是在某些场景下,使用 unsafe 包提供的函数会提升代码的效率,Go 源码中也是大量使用 unsafe 包。

       unsafe 包定义了 Pointer 和三个函数:

type ArbitraryType inttype Pointer *ArbitraryTypefunc Sizeof(x ArbitraryType) uintptrfunc Offsetof(x ArbitraryType) uintptrfunc Alignof(x ArbitraryType) uintptr

       uintptr 可以和 unsafe.Pointer 进行相互转换,uintptr 可以进行数学运算。这样,通过 uintptr 和 unsafe.Pointer 的结合就解决了 Go 指针不能进行数学运算的限制。通过 unsafe 相关函数,可以获取结构体私有成员的地址,进而对其做进一步的读写操作,突破 Go 的类型安全限制。

       最后我们又学习了内存对齐的知识,这样设计可以减少CPU访问内存的次数,加大CPU访问内存的吞吐量,所以结构体中字段合理的排序可以更节省内存,注意:不要在结构体定义的最后添加零大小的类型。

原文:/post/

       好啦,这篇文章就到这里啦,素质三连(分享、点赞、在看)都是笔者持续创作更多优质内容的动力!

       创建了一个Golang学习交流群,欢迎各位大佬们踊跃入群,我们一起学习交流。入群方式:加我vx拉你入群,或者公众号获取入群二维码

       结尾给大家发一个小福利吧,最近我在看[微服务架构设计模式]这一本书,讲的很好,自己也收集了一本PDF,有需要的小伙可以到自行下载。获取方式:关注公众号:[Golang梦工厂],后台回复:[微服务],即可获取。

       我翻译了一份GIN中文文档,会定期进行维护,有需要的小伙伴后台回复[gin

检查网页源码快捷键(网页看源码快捷键)

       1. 网页看源码快捷键

       方法很多:快捷键ALT+F工具——宏——VB编辑器鼠标右键点sheet名——查看代码代码一般写在模块里,有时候也会写在表里可以复制

       2. 打开网页源码的快捷键

       工具/材料:电脑、浏览器。

       第一步,打开电脑打开,浏览器进入。

       第二步,进入后找到右上角单击进入。

       第三步,找到更多工具-开发人员工具点击进入。

       第四步,进入后即可查看源代码即可。

       第五步,或者使用快捷键Ctrl+u即可 快速进入 。

       3. 网页查看源代码快捷键

       打开你要获取的源代码,右击鼠标会出现查看网页源代码(快捷键ctrl+u),全选复制(全选快捷键ctrl+a复制快捷键ctrl+c),在本地电脑上粘贴到(ctrl+v)新建一个文档以.html结尾,保存,点击查看即可。

       4. 网页看源码快捷键设置

       查看错误代码快捷键就是f调试键。

       5. 怎么看网页的源代码快捷键

       打开浏览器按键盘上的F.就可以查看了

       6. 浏览器看源代码的快捷键

       在浏览器里,有几个办法可以查看HTML网页源代码:

       1、右键点击浏览器的空白处,选择查看源代码;

       2、查看网页HTML源代码的快捷键为:Ctrl键+U键;

       3、点击浏览器菜单栏的查看-->>选择查看网页源代码。

       7. 显示网页源码快捷键

       1右键点击浏览器的空白处,选择查看源代码;

       2.

       查看网页HTML源代码的快捷键为:Ctrl键+U键;

       3.

       点击浏览器菜单栏的查看-->>选择查看网页源代码。

       8. 网页源码查看快捷键

       第一种:打开一个网页后点击鼠标的 右键就会有"查看源文件"操作 鼠标右键--->查看源文件 即可弹出一个记事本,而记事本内容就是此网页的html代码。

       可能会碰到一些网页鼠标右键无反应或提出提示框,那是因为做网页的加入了JS代码来禁止用户查看源文件代码或复制网页内容,但是这种方法也没用,只有你稍微懂得以下第二种方法即可查看此网页的源代码源文件。

       第二种:通过浏览器状态栏或工具栏中的点击 “查看”

       然后就用一项“查看源代码”,点击查看源代码即可查看此网页的源代码源文件。

       在微软IE下 查看--->源文件 即可查看此网页代码在傲游浏览器下截图:查看别人网页的源代码可以为我们制作网页时候有帮助,以后将介绍查看源代码更多方法及怎么运用到别人的源代码文件。三、其它浏览器具体查看html网页源代码方法步骤 - TOP首先请打开您的网络浏览器,然后访问任何一个网页。完成上述步骤后,您可以通过以下针对不同网络浏览器的简单步骤快速查看html网页源代码。

       1)、Firefox浏览器,请按以下步骤操作:

       2)、谷歌浏览器,请按以下步骤操作:或直接谷歌浏览器中使用快捷键“Ctrl+U”即可查看被访网页源代码。对于这些的话,新手朋友可以参考附件里面的知识学习下

       9. 查看网站源码快捷键

       通过电脑命令行查看电脑代码:

       1、打开电脑,进入电脑系统,在电脑开始菜单中的查询框中输入cmd。找到命令行运行程序。或者也可以通过电脑键盘组合键,快捷键组合为:windows + R,即可直接打开命令行运行程序了。

       2、确定或者敲键盘回车,进入电脑命令行,在电脑命令行中,输入systeminfo命令,等待查询电脑配置信息。

       3、在查询出来的电脑配置信息中,找到电脑系统类型,这就是当前电脑的代码了。

UE动画优化之URO(UpdateRateOptimizations)源码解析

       1. URO技术是Unreal Engine动画优化的重要组成部分,它通过智能调整远离摄像头的对象的动画帧率,实现了动画质量和性能的平衡。

       2. 在UE中,URO与LOD和VisibilityBasedAnimTick协同工作,核心动画处理主要在USkeletalMeshComponent的TickComponent和TickPose中执行。

       3. FAnimUpdateRateManager负责指挥整个动画更新频率的调整过程,根据对象距离、LOD等因素动态地进行优化,确保每一帧的动画都既流畅又经济。

       4. USkinnedMeshComponent通过TickUpdateRate和FAnimUpdateRateManager的配合,实现了URO的效果。开发者可以通过SetTrailMode和SetLookAheadMode等函数,对动画参数进行精细调整,使角色动作既自然又节能。

       5. 要掌握URO,关键在于四个策略:命令行魔法、距离阈值决定论、LOD定制策略和插值选项。这些策略可以通过CVarEnableAnimRateOptimization、CVarForceAnimRate、MaxDistanceFactor、LODToFrameSkipMap等参数进行调整。

       6. SkeletalMesh组件提供了VisibilityBasedAnimTickOption设置,以实现不同状态下的动画表现一致性。

       7. 使用DisplayDebugUpdateRateOptimizations,开发者可以可视化URO的运行情况,帮助精准调整优化策略,提升游戏性能。

       8. 通过细致的设置,URO就像一位精密的调音师,为游戏世界赋予了动态且高效的动画生命。

UE5引擎Paper2D插件上的PaperFlipbookComponent.h文件源码解读分析

       深入探讨Unreal Engine 5(UE5)Paper2D插件中的UPaperFlipbookComponent.h文件,让我们从整体框架开始。Paper2D插件是UE5专为2D游戏开发设计的,内置了一系列构建2D平面动画与图形的工具。在这些工具中,UPaperFlipbookComponent扮演着关键角色,它负责管理和播放序列帧动画。

       文件中的`private`和`public`关键字,明确划分了类的成员访问权限。`private`区域内的成员方法仅供类内使用,而`public`区域则可供任何访问类实例的代码使用。此外,`virtual`关键字标识了可在派生类中重写的方法,`override`关键字则表明该方法重写了基类中的虚拟方法,这是实现多态的关键。

       UPaperFlipbookComponent是UE5中的一个重要组件,它允许开发者轻松添加2D动画至游戏对象。动画通过一系列帧构成,这些帧按照特定顺序和速度播放,从而创造出动画效果。

       从功能和属性的推测来看,UPaperFlipbookComponent的核心功能可能包括动画播放逻辑、帧管理、速度控制以及循环播放设置。在实际应用中,开发者可能会遇到如何优化动画性能、处理复杂动画序列以及与其他游戏对象交互等问题。

       尽管无法直接访问源代码的具体实现,通过理解类的结构和功能,我们可以推测UPaperFlipbookComponent在动画处理上的设计思路和潜在的实现细节。作为Paper2D插件的核心组件,它对2D游戏动画播放的支持至关重要。

Keil5和uVision5有什么区别啊?

       Keil uVision5是一款集成开发环境(IDE),专门用于开发嵌入式应用程序,尤其是针对ARM Cortex-M、ARM7、ARM9等微控制器的程序。

       详细来说,Keil uVision5为开发者提供了一个完整的工具链,包括代码编辑器、编译器、链接器、调试器和仿真器。这些工具共同帮助开发者编写、测试和优化嵌入式系统的代码。其中,代码编辑器支持C、C++和汇编语言,具有语法高亮、代码折叠、自动补全等功能,可以极大地提高编程效率。编译器则负责将源代码转换成机器码,生成可在微控制器上运行的二进制文件。链接器负责将各个编译单元组合成一个完整的程序。调试器则允许开发者在模拟器或实际硬件上设置断点、单步执行代码、查看变量值等,从而找出并修复程序中的错误。

       此外,Keil uVision5还支持多种微控制器的硬件配置和启动代码生成,使得开发者可以轻松地针对不同的硬件平台进行开发。它还提供了丰富的库函数和驱动程序,以简化对硬件设备的访问和控制。例如,开发者可以使用Keil提供的标准外设库(StdPeriph Lib)或硬件抽象层(HAL)库来方便地控制GPIO、UART、I2C等外设。

       总的来说,Keil uVision5是一个功能强大、易于使用的嵌入式开发环境,它整合了开发嵌入式应用程序所需的所有工具和功能,为开发者提供了一个高效、统一的开发平台。无论是初学者还是经验丰富的开发者,都可以通过使用Keil uVision5来简化开发流程、提高开发效率和质量。