欢迎来到皮皮网官网

【java修改框架源码】【phantomjs 获取源码】【spring源码报错】linux内核源码剖析 fs_linux 内核源码分析

时间:2024-11-28 19:09:26 来源:小阴小阳股票源码

1.Linux内核源码分析:Linux内核版本号和源码目录结构
2.浅析Linux标准的内内核文件系统(Ext2/Ext3/Ext4)
3.Linux内核源码解析---cgroup实现之整体架构与初始化
4.fsIO调度算法之NOOP
5.linux内核源码:文件系统——可执行文件的加载和执行
6.Linux内核源码解析---mount挂载原理

linux内核源码剖析 fs_linux 内核源码分析

Linux内核源码分析:Linux内核版本号和源码目录结构

       深入探索Linux内核世界:版本号与源码结构剖析

       Linux内核以其卓越的稳定性和灵活性著称,版本号的核源精心设计彰显其功能定位。Linux采用xxx.yyy.zzz的码剖格式,其中yy代表驱动和bug修复,源码zz则是分析修订次数的递增。主版本号(xx)与次版本号(yy)共同描绘了核心功能的内内核java修改框架源码大致轮廓,而修订版(zz)则确保了系统的核源稳定性与可靠性。

       Linux源码的码剖结构犹如一座精密的城堡,由多个功能强大的源码模块构成。首先,分析arch目录下包含针对不同体系结构的内内核代码,比如RISC-V和x的核源虚拟地址翻译,是码剖内核与硬件之间的重要桥梁。接着,源码blockdrivers的分析区别在于,前者封装了通用的块设备操作,如读写,而后者则根据特定硬件设备分布在各自的子目录中,如GPIO设备在drivers/gpio。

       为了保证组件来源的可信度和系统安全,certs目录存放认证和签名相关的代码,预先装载了必要的证书。从Linux 2.2版本开始,内核引入动态加载模块机制,fsnet目录下的代码分别支持虚拟文件系统和网络协议,这大大提升了灵活性,但同时也对组件验证提出了更高要求,以防止恶意代码的入侵。

       内核的安全性得到了进一步加强,crypto目录包含了各种加密算法,如AES和DES,它们为硬件驱动提供了性能优化。同时,内核还采用了压缩算法,如LZO和LZ4,以减小映像大小,提升启动速度和内存利用效率。

       文档是phantomjs 获取源码理解内核运作的关键,《strong>Documentation目录详尽地记录了模块的功能和规范。此外,include存储内核头文件,init负责初始化过程,IPC负责进程间通信,kernel核心代码涵盖了进程和中断管理,lib提供了通用库函数,而mm则专注于内存管理。网络功能则在net目录下,支持IPv4和TCP/IPv6等协议。

       内核的实用工具和示例代码在scriptssamples目录下,而security则关注安全机制,sound负责音频驱动,tools则存放开发和调试工具,如perf和kconfig。用户内核源码在usr目录,虚拟化支持在virt,而LICENSE目录保证了源码的开放和透明。

       最后,Makefile是编译内核的关键,README文件则包含了版本信息、硬件支持、安装配置指南,以及已知问题、限制和BUG修复等重要细节。这份详尽的指南是新用户快速入门Linux内核的绝佳起点。

       通过深入研究这些目录,开发者和爱好者可以更全面地理解Linux内核的运作机制,从而更好地开发、维护和优化这个强大的操作系统。[原文链接已移除,以保护版权]

浅析Linux标准的文件系统(Ext2/Ext3/Ext4)

       全称Linux extended file system, extfs,即Linux扩展文件系统,Ext2就代表第二代文件扩展系统,Ext3/Ext4以此类推,它们都是Ext2的升级版。Ext2被称为索引式文件系统,spring源码报错而Ext3/Ext4被称为日志式文件系统。Linux支持多种文件系统,包括网络文件系统(NFS)、Windows的Fat文件系统等。

       查看Linux支持的文件系统:执行命令`ls -l /lib/modules/$(uname -r)/kernel/fs`或`cat /proc/filesystems`。

       内核资料和学习资源:提供Linux内核技术交流群链接,整理了一些个人觉得较好的学习书籍、视频资料。进群私聊管理领取内核资料包(含视频教程、电子书、实战项目及代码)。还提供了免费加入学习的通道,包括Linux/c/c++/内核源码/音视频/DPDK/Golang云原生/QT。

       核心设计数据存放区:这些元素相对稳定,磁盘格式化后,就固定下来了。inode的大小和数量都已固定,大小均为Bytes(新的Ext4和xfs为Bytes)。读取文件时,先读取inode里面记录的文件属性和权限,匹配正确后,才会读取文件内容(block)。在Linux系统中,实际使用inode来识别文件,而不是文件名。

       查看文件或者文件系统的状态:查看系统各个文件系统的inode使用情况。

       中介数据(metadata):这些元素是为了维持文件系统状态而设计出来的,当新增、编辑、删除文档时,都需要变更这些状态信息。整个文件系统的基本信息全部记录在superblock,它的大小一般为Bytes,如果它死掉,将会花费大量的时间去补救哦!!!tinytcp源码下载除了第一个block group含有superblock外,后续block group都可能会含有备份的superblock,目的就是为了避免superblock单点无法救援的问题。

       inode的作用:当用户搜索或者访问一个文件时,UNIX 系统通过 inode 表查找正确的 inode 编号。在找到 inode 编号之后,相关的命令才可以访问该 inode,并对其进行适当的更改。例如使用vi来编辑一个文件,通过 inode 表找到 inode 编号之后,才允许打开该 inode。在 vi 的编辑会话期间,更改了该 inode 中的某些属性,当您完成操作并键入 :wq 时,将关闭并释放该 inode 。通过这种方式,如果两个用户试图对同一个文件进行编辑,inode 已经在第一个编辑会话期间分配给了另一个用户 ID (UID),因此第二个编辑任务就必须等待,直到该 inode 释放为止。

       block的重要性:block是文件数据存储的原子单位,且每一个 block 只能存储一个文件的数据。当格式化一个文件系统时,如果选择不当,就会造成大量的磁盘空间浪费。例如,如果文件系统选择的 block 为4k,存储个小文件,每个bytes,请问此时浪费了多少磁盘空间容量?答案是,每个文件浪费的磁盘容量 = - = bytes,个文件浪费的磁盘容量 = * ~=M,实际文件容量 = * ~=4.7M,浪费率高达%。

       inode和block与文件大小的关系:数据实际存储在 block,为了能够快速地读取文件,每个文件都对应一个 inode 索引文件,tortoisesvn下载 源码记录所有的 block 编号。inode的大小只有bytes或bytes (ext4),如果一个文件太大,block 数量很有可能会超过 inode 可记录的数量。inode 记录 block 号码的区域被设计为 个直接、一个间接、一个双间接、一个三间接记录区。

       计算单文件最大容量:每个 block 号码为数字,需要占据 4bytes。

       查看磁盘和文档的容量:1. 查看文件系统的整体磁盘容量。2. 查看目录和文件容量。查看目录 geekbuying 下所有目录的容量。统计当前目录容量。

       总结:Ext 家族是 Linux 支持度最广、最完整的文件系统,当我们格式化磁盘后,就已经为我们规划好了所有的 inode/block/metadate 等数据,这样系统可以直接使用,不需要再进行动态的配置。不过这也是它最显著的缺点,磁盘容量越大,格式化越慢。CentOS7.x 已经选用 xfs 作为默认文件系统,xfs 是一种适合大容量磁盘和处理巨型文件的文件系统。

Linux内核源码解析---cgroup实现之整体架构与初始化

       cgroup在年由Google工程师开发,于年被融入Linux 2.6.内核。它旨在管理不同进程组,监控一组进程的行为和资源分配,是Docker和Kubernetes的基石,同时也被高版本内核中的LXC技术所使用。本文基于最早融入内核中的代码进行深入分析。

       理解cgroup的核心,首先需要掌握其内部的常用术语,如子系统、层级、cgroupfs_root、cgroup、css_set、cgroup_subsys_state、cg_cgroup_link等。子系统负责控制不同进程的行为,例如CPU子系统可以控制一组进程在CPU上执行的时间占比。层级在内核中表示为cgroupfs_root,一个层级控制一批进程,层级内部绑定一个或多个子系统,每个进程只能在一个层级中存在,但一个进程可以被多个层级管理。cgroup以树形结构组织,每一棵树对应一个层级,层级内部可以关联一个或多个子系统。

       每个层级内部包含的节点代表一个cgroup,进程结构体内部包含一个css_set,用于找到控制该进程的所有cgroup,多个进程可以共用一个css_set。cgroup_subsys_state用于保存一系列子系统,数组中的每一个元素都是cgroup_subsys_state。cg_cgroup_link收集不同层级的cgroup和css_set,通过该结构可以找到与之关联的进程。

       了解了这些概念后,可以进一步探索cgroup内部用于结构转换的函数,如task_subsys_state、find_existing_css_set等,这些函数帮助理解cgroup的内部运作。此外,cgroup_init_early和cgroup_init函数是初始化cgroup的关键步骤,它们负责初始化rootnode和子系统的数组,为cgroup的使用做准备。

       最后,需要明确Linux内一切皆文件,cgroup基于VFS实现。内核启动时进行初始化,以确保系统能够正确管理进程资源。cgroup的初始化过程分为早期初始化和常规初始化,其中早期初始化用于准备cpuset和CPU子系统,确保它们在系统运行时能够正常工作。通过这些步骤,我们可以深入理解cgroup如何在Linux内核中实现资源管理和进程控制。

fsIO调度算法之NOOP

深入解析:IO调度算法NOOP背后的电梯机制

       NOOP,全称为No Operation,是Linux早期版本中最基础的I/O调度算法。这款算法以其简洁的FIFO队列机制,犹如电梯运作原理,巧妙地组织了I/O请求。在某些特定环境下,如嵌入式系统和闪存设备,NOOP展现出其独特的优势。

       电梯调度算法的核心原理在于,它倾向于优先处理写请求,而非读请求。写请求一旦进入文件系统缓存,便能立即执行下一轮操作,而读请求则需要等待前面所有读请求完成,这就形成了一个“饿死”读请求的现象。由于写操作的频繁和短暂性,读请求往往在等待过程中被新的写请求取代,导致读性能受限。

       让我们深入了解NOOP的内核实现。从kernel 3.0版本开始,NOOP算法的实现细节如下:

       static struct elevator_type elevator_noop = {

        .ops = {

        .elevator_merge_req_fn = noop_merged_requests, //合并请求

        .elevator_dispatch_fn = noop_dispatch, //调度请求

        .elevator_add_req_fn = noop_add_request, //添加请求到队列

        .elevator_former_req_fn = noop_former_request, //获取前一个请求

        .elevator_latter_req_fn = noop_latter_request, //获取后一个请求

        .elevator_init_fn = noop_init_queue, //初始化队列

        .elevator_exit_fn = noop_exit_queue, //退出队列

        },

        .elevator_name = "noop",

        .elevator_owner = THIS_MODULE,

       };

       static int __init noop_init(void) {

        elv_register(&elevator_noop);

        return 0;

       }

       static void __exit noop_exit(void) {

        elv_unregister(&elevator_noop);

       }

       module_init(noop_init);

       module_exit(noop_exit);

       关键的调度逻辑在noop_dispatch函数中得以体现,它负责从队列头部取出请求并进行处理。而noop_add_request则是将新的请求添加到队列尾部,等待调度。合并请求的处理函数noop_merged_requests则确保了新请求与现有请求的有序执行。

       尽管NOOP看似简单,但在特定场景下,如对性能要求不高的设备或对I/O延迟敏感的系统,它的效率和稳定性不容小觑。然而,对于读密集型应用,可能需要其他更为复杂的调度算法来优化读性能。参考阅读:io调度器NOOP与deadline的源码级分析(hiyachen-ChinaUnix博客)。

       总结来说,NOOP算法凭借其直观易懂的原理和高效性,在特定环境下成为了一种实用的选择,但同时也需根据应用需求权衡其对读写性能的影响。

linux内核源码:文件系统——可执行文件的加载和执行

       本文深入探讨Linux内核源码中文件系统中可执行文件的加载与执行机制。与Windows中的PE格式和exe文件不同,Linux采用的是ELF格式。尽管这两种操作系统都允许用户通过双击文件来执行程序,但Linux的实现方式和底层操作有所不同。

       在Linux系统中,双击可执行文件能够启动程序,这背后涉及一系列复杂的底层工作。首先,我们简要了解进程间的数据访问方式。在用户态运行时,ds和fs寄存器指向用户程序的数据段。然而,当代码处于内核态时,ds指向内核数据段,而fs仍然指向用户态数据段。为了确保正确访问不同态下的数据,需要频繁地调整fs寄存器的值。

       当用户输入参数时,这些信息需要被存储在进程的内存空间中。Linux为此提供了KB的个页面内存空间,用于存放用户参数和环境变量。通过一系列复制操作,参数被安全地存放到了进程的内存中。尽管代码实现可能显得较为复杂,但其核心功能与传统复制函数(如memcpy)相似。

       为了理解参数和环境变量的处理,我们深入探讨了如何通过不同fs值来访问内存中的变量。argv是一个指向参数的指针,argv*和argv**指向不同的地址,它们可能位于内核态或用户态。在访问这些变量时,需要频繁地切换fs值,以确保正确读取内存中的数据。通过调用set_fs函数来改变fs值,并在读取完毕后恢复,实现不同态下的数据访问。

       在Linux的加载过程中,参数和环境变量的处理涉及到特定的算法和逻辑,以确保正确解析和执行程序。例如,通过检查每个参数是否为空以及参数之间的空格分隔,来计算参数的数量。同时,文件的头部信息对于识别文件类型至关重要。早期版本的Linux文件头部信息相当简单,仅包含几个字段。这些头部信息为操作系统提供了识别文件类型的基础。

       为了实现高效文件执行,Linux使用了一系列的内存布局和管理技术。在执行文件时,操作系统负责将参数列表、环境变量、栈、数据段和代码段等组件放入进程的内存空间。这种布局确保了程序能够按照预期运行。

       最后,文章提到了一些高级技术,如线程切换、内存管理和文件系统操作,这些都是Linux内核源码中关键的部分。尽管这些技术在日常编程中可能不常被直接使用,但它们对于理解Linux的底层工作原理至关重要。通过深入研究Linux内核源码,开发者能够更全面地掌握操作系统的工作机制,从而在实际项目中提供更高效、更安全的解决方案。

Linux内核源码解析---mount挂载原理

       Linux磁盘挂载命令"mount -t xxx /dev/sdb1 abc/def/"的底层实现原理非常值得深入了解。从内核初始化的vfsmount开始说起。

       内核初始化过程中,主要关注"main.c"中的vfs_caches_init函数,这个方法与mount紧密相连。接着,跟进"mnt_init"和"namespace.c",关键在于最后的三个函数,它们控制了挂载过程的实现。

       在"mount.c"中,sysfs_fs_type结构中包含了获取超级块的函数指针,而"init_rootfs"则注册了rootfs类型的文件系统。挂载系统调用sys_mount中的dev_name, dir_name和type参数,分别对应设备名称、挂载目录和文件系统类型。

       "do_mount"方法通过path_lookup收集挂载目录信息,创建nameidata结构,然后调用do_add_mount进行实际挂载。这个过程涉及do_kern_mount和graft_tree,尽管具体实现较为复杂,但核心在于创建vfsmount并将其与namespace关联。

       在"graft_tree"中的判断逻辑中,vfsmount被创建并与其父mount和挂载目录的dentry建立关系。在"attach_mnt"方法中,新vfsmount与现有结构关联,设置挂载点和父vfsmount,最终形成挂载的概念,即为设备分配vfsmount,并将其与指定目录和vfsmount结合,成为vfs系统的一部分。

精选图文

copyright © 2016 powered by 皮皮网   sitemap