1.Python代码爬取抖音无水印视频并-附源代码
2.FFmpeg源码分析:视频滤镜介绍(上)
3.水印源码是照片照片什么意思?
4.Matlab DWT与SVD数字水印解析 参考源码
Python代码爬取抖音无水印视频并-附源代码
使用Python爬取并下载抖音无水印视频的具体步骤如下: 首先,请求重定向的消除消除地址。通过复制抖音视频分享链接中的水印水印v.douyin.com/部分,需要使用request请求该链接。源码源码由于链接会进行重定向,照片照片因此在请求时应添加allow_redirects=False参数。消除消除金融融资网站源码返回值将包含一系列参数,水印水印其中包含该视频的源码源码网页地址。为了获取无水印视频的照片照片链接,需将网页地址中的消除消除特定数字拼接到抖音官方的json接口上。 接下来,水印水印请求json链接。源码源码根据前面获取的照片照片视频json数据链接,可以通过浏览器查看内容以获取相关值。消除消除使用request请求该链接,水印水印进一步分析json内容以获取所需信息。 步骤三涉及链接的拼接。所有视频的游戏同步器 源码地址差异仅在于video_id,因此主要任务是获取json返回数据中的video_id。将该值与aweme.snssdk.com/aweme/...拼接在一起,即可得到抖音无水印视频的地址。访问此链接时,系统会自动重定向到视频的实际地址,从而方便下载无水印视频。 为了实现这一过程,以下是完整的源代码示例: 抖音无水印视频解析接口:https://hmily.vip/api/dy/?url= 使用方法:在接口地址后添加要下载的抖音视频链接。返回的将是json数据,包含下载链接。 以上方法旨在提供学习资源和帮助,仅供个人或非商业用途。在使用过程中请确保遵守相关法律法规,尊重版权和用户隐私。FFmpeg源码分析:视频滤镜介绍(上)
FFmpeg在libavfilter模块提供了丰富的音视频滤镜功能。本文主要介绍FFmpeg的视频滤镜,包括黑色检测、视频点播源码 java视频叠加、色彩均衡、去除水印、抗抖动、矩形标注、九宫格等。
黑色检测滤镜用于检测视频中的纯黑色间隔时间,输出日志和元数据。若检测到至少具有指定最小持续时间的黑色片段,则输出开始、结束时间戳与持续时间。该滤镜通过参数选项rs、gs、bs、rm、gm、bm、造梦西游4源码rh、gh、bh来调整红、绿、蓝阴影、基调与高亮区域的色彩平衡。
视频叠加滤镜将两个视频的所有帧混合在一起,称为视频叠加。顶层视频覆盖底层视频,输出时长为最长的视频。实现代码位于libavfilter/vf_blend.c,通过遍历像素矩阵计算顶层像素与底层像素的混合值。
色彩均衡滤镜调整视频帧的RGB分量占比,通过参数rs、gs、bs、rm、xml编辑器源码gm、bm、rh、gh、bh在阴影、基调与高亮区域进行色彩平衡调整。
去除水印滤镜通过简单插值抑制水印,仅需设置覆盖水印的矩形。代码位于libavfilter/vf_delogo.c,核心是基于矩形外像素值计算插值像素值。
矩形标注滤镜在视频画面中绘制矩形框,用于标注ROI兴趣区域。在人脸检测与人脸识别场景中,检测到人脸时会用矩形框进行标注。
绘制x宫格滤镜用于绘制四宫格、九宫格,模拟画面拼接或分割。此滤镜通过参数x、y、width、height、color、thickness来定义宫格的位置、大小、颜色与边框厚度。
调整yuv或rgb滤镜通过计算查找表,绑定像素输入值到输出值,然后应用到输入视频,实现色彩、对比度等调整。相关代码位于vf_lut.c,支持四种类型:packed 8bits、packed bits、planar 8bits、planar bits。
将彩色视频转换为黑白视频的滤镜设置U和V分量为,实现效果如黑白视频所示。
水印源码是什么意思?
水印是指在或视频上添加透明文字或图像来标识原始来源或作品的一种技术。水印源码则是指生成水印的程序代码。通常情况下,添加水印可以有效地防止或视频被盗用或滥用,维护版权和知识产权的合法权益。
水印源码也是一种保护个人信息的手段。现在,许多人通过在社交媒体上发布自己的或视频来表达自己的生活态度或个人品味,但同时也面临着个人信息泄露的风险。通过添加水印,可以在保护自己作品版权的同时,避免自己的信息被盗用。
此外,水印源码也是一种利用互联网平台建立自己品牌形象的方式。例如,在许多知名的互联网平台上,都因为关注水印的原因,涌现出了许多用户体验优良、便利快捷且具有个性化特点的图像处理软件。通过这些软件,用户可以快速、便捷地给自己的或视频添加水印,提升自己的品牌形象和核心竞争力。
Matlab DWT与SVD数字水印解析 参考源码
Matlab中的DWT(离散小波变换)与SVD(奇异值分解)在数字水印技术中扮演着关键角色。它们基于变换域的特性,提供了一种稳健的水印嵌入和提取策略。DCT(离散余弦变换)利用图像高频信息的集中性,而SVD的稳定性则确保了水印在图像扰动时的可靠性。在水印嵌入过程中,首先对图像进行DCT变换,然后选择SVD分解来处理变换后的系数,将水印信息巧妙地嵌入到奇异值矩阵中。这种策略对几何攻击具有一定的抵抗能力,且不影响图像视觉质量。
对于实际应用,如图像打印和扫描后的水印提取,SVD嵌入的水印算法尤其重要,因为它能应对印刷过程中的模拟-数字转换和设备扭曲。然而,传统SVD水印需要原始图像,存在传输安全风险。本文的改进算法则在嵌入阶段避免了使用原图的SVD结果,降低了对原始数据的依赖,提高了效率。水印的嵌入步骤包括选取图像、分离绿色通道、DCT和SVD处理,接着将水印灰度化并嵌入到SVD的奇异值中,最后通过量化形成带水印的图像。
而在水印提取时,即使面对打印扫描攻击后的图像,通过读取图像、DCT变换和SVD分解,可以计算并提取出嵌入的水印信息。这种策略兼顾了水印的鲁棒性和透明性,是数字水印技术的重要组成部分。