本站提供最佳淘宝图片预览源码在哪服务,欢迎转载和分享。

【弹头奇兵源码】【java阅读源码】【php c源码】cpython 源码下载

2024-11-28 17:29:41 来源:大厂nginx源码 分类:时尚

1.Python C语言API教程(一、码下用C写一个Python包)
2.Python中的码下pyc文件是作什么用的?(61)
3.教你阅读 Cpython 的源码(一)
4.cpython是什么?pypy是什么?python和这两个东西有什么关系

cpython 源码下载

Python C语言API教程(一、用C写一个Python包)

       Python的码下C语言API教程(一:实践入门)

       Python的C语言API在提升程序性能和实现跨平台适配方面发挥着关键作用。通过官方API,码下开发者可以直接操作Python解释器的码下底层,绕过Python的码下弹头奇兵源码GIL限制,达到加速效果,码下如cython和codon等工具相比,码下C语言API更为直接有效。码下

       Python的码下C语言API还支持本地化适配,例如PyQT库,码下它根据操作系统和硬件调整图形界面。码下在机器学习框架TensorFlow这类需要底层优化和硬件适配的码下场景中,C语言API更是码下不可或缺。

       理解C语言API有助于深入学习CPython,码下因为Python的执行实际上就是调用C语言API。Python源码阅读者会发现,熟悉API有助于解析CPython的内部工作原理。

       要进行Python的C开发,首先需要配置环境。Windows用户需安装Visual Studio Build Tools,选择Python开发和C++桌面开发工作负荷。java阅读源码Mac/Linux用户则需安装Python开发包(如GCC)和调试工具(如Windows的Visual Studio自带工具或Mac/Linux的GDB)。

       接下来,我们将通过实例创建一个简单的Python扩展模块datetimecpy,模拟官方datetime模块。我们从编写Python调用代码开始,然后用C语言实现,包括头文件引入、定义now方法、注册方法、模块定义、以及将模块嵌入到Python解释器中。

       通过本章,你将掌握创建C扩展模块的基础步骤。在后续章节,我们将深入讲解PyObject对象及其在C语言API中的应用。

Python中的pyc文件是作什么用的?()

       Python编程世界里,有一种特殊的文件类型叫做pyc,它是py源码文件经过官方解释器编译后的产物。pyc文件是二进制文件,主要作用是提升程序的运行效率。

       当导入模块时,php c源码Python解释器会对模块进行编译,生成pyc文件,存储在名为__pycache__的文件夹中。文件命名规则明确,如module.cpython-.pyc,其中cpython-表示使用的Python解释器版本为。pyc文件的使用场景在于,如果模块源码未修改,Python会在下次运行时直接加载pyc文件,跳过编译步骤,从而节省时间。

       例如,创建一个module.py和test.py,运行test.py会生成module.cpython-.pyc。虽然pyc文件可以被反编译,但如果源码未加入混淆,这提供了某种程度的代码保护。但需要注意的是,pyc文件并不能替代Python解释器,它只是加速执行的手段。

       我们可以通过命令行生成非模块文件的溯源码 奶粉pyc,如hello.py,通过python -m py_compile hello.py命令。生成的hello.cpython-.pyc同样可以由Python运行。

       总的来说,pyc文件在Python开发中扮演着辅助执行速度的角色,但并非隐藏源码的完全解决方案。如果你在Python编程中遇到关于pyc文件的问题,记得和我一起探讨哦!

教你阅读 Cpython 的源码(一)

       目录

1. CPython 介绍

       在Python使用中,你是否曾好奇字典查找为何比列表遍历快?生成器如何记忆变量状态?Cpython,作为流行版本,其源代码为何选择C和Python编写?Python规范,内存管理,这里一一揭示。

       文章将深入探讨Cpython的内部结构,分为五部分:编译过程、解释器进程、编译器和执行循环、对象系统、以及标准库。了解Cpython如何工作,反码补码源码从源代码下载、编译设置,到Python模块和C模块的使用,让你对Python核心概念有更深理解。

       2. Python 解释器进程

       学习过程包括配置环境、文件读取、词法句法解析,直至抽象语法树。理解这些步骤,有助于你构建和调试Python代码。

       3. Cpython 编译与执行

       了解编译过程如何将Python代码转换为可执行的中间语言,以及字节码的缓存机制,将帮助你认识Python的编译性质。

       4. Cpython 中的对象

       从基础类型如布尔和整数,到生成器,深入剖析对象类型及其内存管理,让你掌握Python数据结构的核心。

       5. Cpython 标准库

       Python模块和C模块的交互,以及如何进行自定义C版本的安装,这些都是Cpython实用性的体现。

       6. 源代码深度解析

       从源代码的细节中,你会发现编译器的工作原理,以及Python语言规范和tokenizer的重要性,以及内存管理机制,如引用计数和垃圾回收。

       通过本文,你将逐步揭开Cpython的神秘面纱,成为Python编程的高手。继续深入学习,提升你的Python技能。

       最后:结论

       第一部分概述了源代码、编译和Python规范,后续章节将逐步深入,让你在实践中掌握Cpython的核心原理。

       更多Python技术,持续关注我们的公众号:python学习开发。

cpython是什么?pypy是什么?python和这两个东西有什么关系

       p >本文旨在介绍Python的主流实现CPython是如何执行源代码的。我们将以当前主分支的CPython 3.版本为例,解释从源代码到执行的全过程。

       p > Python语言内嵌有一个编译器。首先,需要对源代码进行词法分析,将字符串转化为一个个单词,以便进一步处理。这一过程主要发生在`Parser/tokenizer.c`文件中,由手工编写实现。

       p > 完成词法分析后,接下来是语法分析阶段。通过这一阶段,CPython真正理解了代码的结构。自Python 3.版本起,CPython采用了一种新的PEG解析器。

       p > PEG,全称Parser Expression Generator,理念是通过描述你设计的语法,生成相应的解析代码。在CPython项目中,`Grammar/python.gram`文件描述了Python语法,通过`Tools/peg_generator/pegen/`生成器转换为解析代码,位于`Parser/parser.c`。我有幸参与过`Grammar/python.gram`的修改,无需修改语法即可保持其稳定。

       p > PEG语法广泛应用于多种场景,因为它允许自定义描述语法,同时生成器也可以自定义。在CPython中,`Tools/peg_generator/pegen/metagrammar.gram`描述了元语法,可以用来生成不同语言的解析代码,并在多种语言中实现。

       p > 语法分析后,结果是抽象语法树(AST),声明在`Include/internal/pycore_ast.h`,并由`ast`模块对外提供接口。

       p > 有了AST,下一步是将其转换为字节码。CPython的核心是解释执行,执行的内容即为字节码。这些字节码保存在`__pycache__/*.pyc`文件中,每个小版本的字节码都可能发生变化,用户不应假设兼容性。我们可以通过`dis`模块查看编译后的结果。

       p > 字节码生成过程涉及符号查找、指令优化等多个步骤,尤其是在Python 3.的性能优化中,有一部分就是在字节码层面进行的改进。这部分主代码位于`Python/compile.c`。

       p > 字节码生成的输入是AST,输出为Python字节码。整个转换过程由`_PyParser_ASTFromFile`函数串联起来。

       p > 完成字节码生成后,下一步是执行字节码。这通常是一个大的循环过程,主要在`_PyEval_EvalFrameDefault`中实现,包含了大量的`switch case`结构。

       p > `Python/generated_cases.c.h`文件包含了几乎所有的字节码实现,并且通过`Python/bytecodes.c`生成。CPython执行的核心通常称为CPython VM(虚拟机)。

       p > 在真正执行之前,还需要内置对象的支持。基本的内置对象如`str`、`list`和`dict`在Python中至关重要。这些对象的C实现构成了CPython VM的重要部分,位于`Objects`目录下,并编译在VM程序中。

       p > Python内置了许多基本库,它们的代码通常位于`Lib`目录下。同时,CPython VM提供了丰富的C API,允许用户编写C扩展,并方便地在C扩展和Python VM之间传递对象。

       p > 为了提供基本功能,CPython必须使用一些操作系统提供的原生C函数,因此内置了许多C扩展。例如,`os`模块的C实现位于`Modules`目录下,这些模块通过CPython VM动态加载。

       p > Python最初的定位是胶水语言,大量C扩展极大地丰富了CPython的生态系统,同时也是其他Python实现如PyPy等的限制。

       p > 最后,将所有这些组件组织起来的代码位于`Python/pythonrun.c`中,经过这一系列步骤后,代码终于可以执行了。

【本文网址:http://5o.net.cn/html/08f125298739.html 欢迎转载】

copyright © 2016 powered by 皮皮网   sitemap