1.JQuery 的对对象 deferred . promise对象
2.Axios源码深度剖析 - AJAX新王者
3.Promise原理详解(二)
4.从零开始手写Promise
5.微信小程序使用Promise
6.c++基础语法之future,promise,象源async详细讲解-SurfaceFlinger学习必备c++知识
JQuery 的实现 deferred . promise对象
你说的这段描述是对 jQuery(selector).promise()的描述,并不是原理 jQuery.Deferred() 的描述。原文是对对象:
Return a Promise object to observe when all actions of a certain type bound to the collection, queued or not, have finished.而这段话是说:
jQuery(selector).promise() 函数是返回一个 Promise 对象,这个对象的象源place源码作用是当绑定到集合也就是$('div')这样取到的集合的指定类型的所有动作(promise方法的第一个参数 type ,默认是实现fx,也就是原理动画)是否已经完成了。英文水平有限,对对象有些地方看不怎么懂,象源这话说得有点乱,实现不过意思应该是原理这样的,举个例子:
$('#message').animate({ width:,对对象 height:}, )
.promise()
.done(function(){
console.log('animate end');
});
也可以写成:
$('#message').animate({ width:, height:}, );var promise = $('#message').promise();
promise.done(function(){
console.log('animate end');
});
这里的 $('#message') 就是所说的collection,
而动画 animate (即 fx)就是象源 certain type,
里面的实现所有动作就是 action queue,当然,这里只有1个,就是默认的fx (但是文档中没有找到介绍其它的类型)。
后面的 var promise = xxx 就是指返回的 Promise对象,这个对象在收到animate 方法里面的信号(这个信号包括 resolve, reject, notify, resolveWith, rejectWith, and notifyWith等)可以调用方法done(当然还有不少其它的方法,这里没用到就不说了,自己看文档吧),然后执行done的回调函数了。
animate方法会自己发送promise的信号,不用手动去处理。具体细节可以参考 jQuery.Deferred() 方法,在API的介绍中有这个方法的使用示例。
需要注意的是, jQuery(selector).promise()和jQuery.Deferred().promise()是不一样的。
从目前我知道的来说,jQuery(selector).promise() 是专门用来处理jquery中的动画(animate)使用的,而jQuery.Deferred().promise()使用的范围更广,没看源码,不过猜一下,我觉得 jQuery(selector).promise()是jQuery在动画的时候对jQuery.Deferred().promise()的特殊实现(或者叫做功能封装)。
然后再说一下jQuery.Deferred().promise()吧。它的一般用法为:
var defer= $.Deferred();$.when(defer.promise()).then<done|fail|....>(参数...)
defer.resolve('传参数或留空');
defer.reject('传参数或留空');
defer.notify('传参数或留空');
// ..... 其它信号
实例请自己去看API页面。
上面的defer是一个延迟对象(deferred)引用,表示这个对象的信号会在将来发出。
接下来的 $.when(defer.promise()) 是指jQuery 要监视 defer的信号,收到信号后执行后面的then(或者done, fail或其它)的函数。而后面的defer.resolve<reject|notify>则是发出信号,通知jQuery延迟调用已经执行了,jQuery收到信号后,科技计划管理系统源码就去调用这个延迟的promise()后面的函数。
Axios源码深度剖析 - AJAX新王者
Axios 是一个基于 Promise 的 HTTP 请求库,支持浏览器和 Node.js 环境。其源码在 GitHub 上开源,欢迎 fork 使用并提出指正。以下为 Axios 的核心目录结构说明,主要关注在 /lib/ 目录下的文件。
在使用 Axios 时,你可能会遇到多种调用方式,本文将带你深入了解这些方式及其原理。
首先,我们来了解一下 Axios 的基本用法。你可以使用以下几种方式发起请求:
1. `axios(option)`:提供一个配置对象进行调用。
2. `axios(url[, option])`:传入 URL 和配置对象。
3. 对于 GET、DELETE 等方法:`axios[method](url[, option])`。
4. 对于 POST、PUT 等方法:`axios[method](url[, data[, option]])`。
5. 使用默认实例:`axios.request(option)`。
通过以上方式,你可以轻松发起 HTTP 请求。
深入源码分析,你将发现 Axios 的强大之处。通过 `axios.js` 文件的入口,核心在于 `createInstance` 方法,该方法能生成一个指向 `Axios.prototype.request` 的 Function,从而实现多种调用方式。
在 Axios 的核心 `Axios` 类中,`request` 方法是所有功能的中枢,无论是 GET、POST 还是其他方法,最终都通过 `request` 方法实现。
配置项是 Axios 与用户交互的关键,它涵盖了几乎所有功能的配置。配置项从低到高优先级顺序为:默认配置对象、`defaults` 属性、`request` 方法参数。
在使用 Axios 时,配置项是如何生效的?答案在于合并多个配置源,最终得到一个综合配置对象。
此外,Axios 提供了拦截器系统,让你可以控制请求前后的证件照换装源码数据处理。每个 Axios 实例都有 `interceptors` 属性,用于管理拦截器,让你实现精细的控制。
核心的 `dispatchRequest` 方法则负责处理请求流程,包括请求适配器、发送请求、数据转换等步骤。最后,通过 Promise,你可以优雅地处理异步请求。
数据转换器让你能轻松地在请求和响应数据之间进行转换,如将对象转换为 JSON 格式。默认情况下,Axios 自动处理 JSON 数据转换。
在使用 Axios 时,你还能灵活地控制超时、取消请求、设置 header、携带 cookie 等功能。通过源码分析,你可以深入理解 Axios 的内部机制。
总结,Axios 以其强大、灵活的功能和简洁的 API 设计,成为现代应用中不可或缺的 HTTP 请求工具。通过本文的深入探讨,你将对 Axios 的运作机制有更深刻的理解,从而更好地利用其功能。
Promise原理详解(二)
在深入探讨Promise原理的第二部分中,我们继续从源码角度分析Promise的实现与使用。在上一节中,我们已了解了如何创建并赋值给Promise对象,以及在特定上下文下如何进行传递和调用。
Promise的核心方法之一便是`then`,它定义了访问Promise当前值、最终值及异常处理的机制。`then`方法可以接受两个参数,即成功回调函数`onFulfilled`和错误回调函数`onRejected`,这两个函数是可选的。当参数不是函数时,会发生值穿透。重要的是,`then`方法只能调用一次,次日买入选股源码但可以多次调用`then`以实现链式调用。
需要注意的是,`then`方法的返回结果必须是Promise对象。这意味着在调用`then`之后,返回的Promise对象将继承上一个`then`调用的返回值作为其参数传递给下一个`then`方法。
以示例代码为例,第二个`then`方法将利用上一个`then`调用返回的值。
接下来,我们将聚焦于`then`函数的内部实现,以深入理解其如何满足上述规范。
`then`函数首先获取当前Promise对象,并创建一个名为`child`的Promise对象,然后返回这个`child`对象,确保遵循`then`方法必须返回Promise对象的规则。
接下来的步骤涉及一系列判断和操作,这些操作主要围绕于确保Promise的生命周期和状态转换的正确性。首先,函数对`child`进行判断,若其未被初始化,便调用`makePromise`函数进行初始化。此步骤确保Promise对象的完整性。
接着,获取当前`then`方法所访问的Promise对象的`_state`属性。这个属性反映了Promise的状态:执行、拒绝或等待。基于此状态,`then`方法执行不同的逻辑操作。
当Promise处于执行或拒绝状态时,`then`方法会调用`invokeCallback`函数,执行相应的回调。而当Promise处于等待状态时,会调用`subscribe`函数,将回调函数添加至事件队列,等待Promise状态转换。
以代码为例,当存在一个`setTimeout`函数并延迟毫秒时,Promise的状态为等待状态。此时,`subscribe`函数被调用,将回调函数添加至事件队列,等待`setTimeout`触发。
`subscribe`接收四个参数:父级Promise对象、当前`then`方法返回的web前端项目实现源码`child`对象、成功回调函数和拒绝回调函数。获取父级Promise的事件队列,并在队列尾部添加事件,确保回调函数的正确执行。
之后,检查事件队列的长度和父级Promise的状态,若非等待状态,则执行`publish`函数,将父级Promise作为参数传递给`publish`函数。至此,Promise的事件队列准备就绪,静待`resolve`或`reject`函数的触发。
在当前阶段,若`setTimeout`函数未返回值,事件队列已准备,静待Promise对象调用`resolve`或`reject`函数。这一阶段的流程梳理至此结束。
接下来,我们深入探讨`resolve`方法及其执行流程。假设`setTimeout`函数已触发。在深入分析之前,我们先回顾之前的方法调用流程,并在代码中找出关键点。接下来的分析将集中在`resolve`方法的具体实现及其对事件队列的处理过程。
当`resolve`函数被调用时,若其参数值是字符串类型,将直接进入`fulfill`函数。在`_subscribers`数组中,长度通常为3,因为已添加回调函数,`_subscribers`数组内容为`[child, callback(), null]`。
接下来,执行`publish`函数,获取事件队列。这里巧妙之处在于,通过`_state`属性来定位执行回调函数,`FULFILL`状态对应`1`,`REJECTED`状态对应`2`,以此精确确定执行的回调函数。
具体操作如下:第一个参数表示状态,第二个参数是Promise对象,第三个参数是回调函数,第四个参数是回调函数的参数。这里的`res`相当于第四个参数。
首先,判断回调函数是否为函数。如果不是,将值赋给`detail`,实现值穿透。如果回调函数是函数,则通过`try-catch`捕获异常,若捕获到异常,则将`error`赋值,否则设置`successed`为真值。确保`value`不等于Promise对象本身,避免递归死循环。此时,第一个`then`函数的执行完毕。
在上述分析的基础上,根据规范指导执行相应的操作。具体细节可参考相关文档。
特别提到的是,`resolve`方法的递归调用及其对事件队列的清空过程。在特定情况下,若`value`是对象或函数,处理方式与前述情况类似。然而,第二种情况的详细解释将留待下一节深入探讨。
在总结部分,我们简要介绍了`then`方法的其他分支,即当`_state`已经存在结果时,会立即执行`invokeCallback`函数,实现无回调情况下的即时结果返回。
最后,我们讨论了`Promise`的`asap`函数,其在特定环境下执行回调函数,确保Promise逻辑的正确执行顺序。通过`asap`函数的逻辑判断,我们可以理解其在不同环境下的实现机制,确保Promise能够在多种环境和条件下保持一致性和高效性。
从零开始手写Promise
面试时,常被问及Promise应用;深入者或询问其实现细节,或查阅源码。本文聚焦于探究Promise内部如何实现链式调用。
所谓Promise,实质是一个容器,存储异步操作的结果。其提供统一接口,便于处理各种异步操作。
在Promise出现前,异步操作常通过回调函数实现,但过度嵌套引发回调地狱。Promise解决此痛点,简化回调复杂性。
Promise/A+规范,由社区提出,为业内所接受。规范定义Promise行为,包括状态转换不可逆,终值不可改变。
实现Promise需构造函数实例化对象,通过实例的then方法处理异步结果。规范要求Promise必须包含等待态、执行态和拒绝态。
Promise构造函数立即执行,传入resolve和reject函数。异常情况通过try/catch捕获处理。
Promise状态一旦改变,无论成功或失败,都会触发then回调函数。回调函数需根据状态调用对应处理终值的函数。
规范允许onFulfilled和onRejected参数可选。实现时,对参数进行类型判断,忽略非函数参数。
通过一个四十行左右的简单Promise垫片,我们初步实现Promise基本结构与then方法。
链式调用是Promise核心。规范要求每个then方法返回新Promise对象,允许方法连续调用。
实现链式调用需返回新的Promise对象,避免调用时覆盖或丢失回调函数。通过返回Promise解决。
规范中,then方法返回Promise对象后,处理onFulfilled和onRejected时,需考虑值的传递特性。
Promise解决过程抽象,需输入Promise和值x。x为thenable对象时,接受x状态;否则使用x值执行。
实现解决过程时,首先排除传入参数自身情况,之后判断x是否为对象或函数,取then方法处理。
取then方法时,需使用try/catch捕获可能出现的错误,防止恶意代码导致程序崩溃。
对不同情况正确判断,处理函数调用,以及递归处理嵌套Promise,实现完整链式调用。
验证通过promises-aplus-tests工具,确保实现符合规范。
了解更多前端知识,请关注公众号前端壹读。如认可内容,欢迎关注专栏或访问网站获取更多文章。
微信小程序使用Promise
在微信小程序开发过程中,我曾遇到使用Promise的问题。官方示例中的cb虽然曾经让我们熟悉,但现在转向Promise是必要的,否则我难以接受,这让我辗转反侧,一整夜未眠。清晨,我便迫不及待地寻找解决方案。
首先,尝试直接利用Promise,尽管在小程序环境中可行,但受浏览器支持范围的限制,不能保证所有环境都能顺利运行。为解决兼容性问题,我考虑引入第三方库,如bluebird或Q,这些库可以在不受浏览器依赖的情况下工作。
开始行动,我选择使用bluebird,添加到项目结构中。然而,在App.js中尝试时,发现Promise并未被定义,尝试失败。这时,我开始深入探究。
我怀疑是否因为小程序禁止加载第三方JS。但我不愿完全依赖自己的实现,于是回想起来,在logs.js中引入util.js的成功经验。小程序的加载机制并非CMD或AMD,而是有着独特的设计,类似Angular。每个js文件都有自己的包头和局部window对象,document可能并不总是可用。
再次尝试引入Q,我注意到它支持多种加载方式,包括CommonJS和RequireJS。尽管如此,我仍未能在调试中找到使用第三方包的途径,因为小程序有自己的加载规则,这使得阅读bluebird源码时感到困惑。
总结,要在微信小程序中使用Promise或者第三方库,需要理解和适应其独特的加载机制,这包括理解局部window对象和文档对象的限制,以及require函数和module对象的使用方式。这是一次对小程序内部机制的深入探索,也提醒我们在开发时要注意其特定的限制和优化策略。
c++基础语法之future,promise,async详细讲解-SurfaceFlinger学习必备c++知识
在SurfaceFlinger源码分析中,我遇到了一些新的C++基础语法,比如future和promise。这些工具的引入,使得在多线程环境中访问异步操作的结果变得更加方便。
传统上,在C++中,我们需要通过创建线程并使用`join`等待线程完成,然后将结果赋值给变量。这种过程相对繁琐。为了解决这个问题,C++引入了`std::future`来访问异步操作的结果。`future`类不能立即获取结果,而是在异步操作完成后,通过同步等待或者查询状态来获取结果。`future`的状态有三种:未开始(`future_status::deferred`)、已完成(`future_status::ready`)、超时(`future_status::timeout`)。
`std::async`函数用于创建异步任务,结果保存在`future`对象中。当需要获取异步结果时,通过`future.get()`方法来完成。如果只关注任务完成,可以使用`future.wait()`方法。`async`函数的参数包括线程创建策略(如`std::launch::async`、`std::launch::deferred`)、要执行的函数和函数执行时需要传递的参数。
`std::promise`类帮助线程赋值。在线程函数中,通过`promise`对象的`set_value`方法为外部传递的`promise`赋值。在任务完成后,可以通过`promise`对象关联的`future`获取设置的值。
在实际应用中,`promise`和`future`的结合使得在多线程环境下访问异步操作的结果更加灵活。例如,在SurfaceFlinger源码中,`future`用于等待子线程执行完成,并通过`set_value`设置结果,`get`方法用于获取结果。这种结合使得源码分析更加简便。
为了深入理解这些新语法,我查阅了相关文档,并实践了在SurfaceFlinger源码中的应用。同时,我还使用了性能分析工具如`perfetto`和`systrace`来验证代码的运行效果。这些实践不仅帮助我学习了C++的新语法,还加深了对SurfaceFlinger源码的理解。
如果你对这些C++基础语法感兴趣,或者想要了解SurfaceFlinger源码的详细分析,可以参考我的视频教程,或者私聊我进行深入探讨。我的文章和视频内容涵盖了C++基础语法的学习,以及如何将其应用于实际的SurfaceFlinger源码分析。
2025-01-19 23:59
2025-01-19 23:54
2025-01-19 23:54
2025-01-19 23:44
2025-01-19 22:37
2025-01-19 22:35
2025-01-19 22:15
2025-01-19 22:00